The Union-Find Problem

Divide-and-Conquer Recurrences, Baby Version

Divide-and-Conquer Recurrences, Baby Version

Typical Divide-and-Conquer:
If problem set S has size n=1, then nothing to be done.

Otherwise:
* partition S into subproblems of size < f(n)

* solve each of the n/f(n) subproblems recursively

* combine subsolutions.

Divide-and-Conquer Recurrences, Baby Version

Typical Divide-and-Conquer:
If problem set S has size n=1, then nothing to be done.

Otherwise:
* partition S into subproblems of size < f(n)

* solve each of the n/f(n) subproblems recursively

* combine subsolutions.

(f needs to satisfy contraction condition f(n)<n for n>1.)

_ n >

_

T I o
[\
: ,

X(n) < - 0 n ifn<l1
. an+ X(f(n) ifn>1

f(n)

_

O --svmranmnannsas ®
[\

: ,

X(n) < + ° n .if n=l

. an+ f(n)-X(f(n)) ifn>1

X(n) < a-n-f*(n)

0 ifn<1

k1+f*(f(n)) ifn>1

(

*(n) =

0

1+ F(f(n))

ifn<l
if n>1

f*(n)=min{ k | f(f(-

f(n)---)<1}

4

k times

(

f*(n) = -

0

k1+f*(f(n)) ifn>1

ifn<l

f*(n) =min{ k | f(f(- f(n)---) <1}

Properties:

4

k times

) f(fm) = f(n)-1

2) f a“nice" compaction

= f~ a "nice" compaction and
f* “much smaller” than f

f(n) f*(n)
n-1 n-1
n-2 n/2
n-c n/c
n/2 0g,n
n/c og.n
\n og log n
log n og'n

Maintain partition of S={12,--- n}

under operations

ORD
®

Maintain partition of S={12,--- n}

under operations
Union(2 ,4)

SRONN
o o

Maintain partition of S={12,--- n}

under operations
Union(2 ,4)

@,
®

®

Find(3)= 6 (representative element)

Impementation

* forest F of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

IO

e

N —=>w—>o

Impementation

* forest F of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

IO
NO

e

N —=>w—>o

-
Union(2_, 4) / T
> 2 8

?

N —>w—>o

Impementation

* forest F of rooted trees with node set S

* one tree for each group in current partition
* root of tree is representative of the group

IO
NO

e

N —=>w—>o

-
Union(2_, 4) / T
> 2 8

?

N —>w—>o

Find(x) follow path from x to root

Heuristic 1: “linking by rank”

- each node x carries integer rk(x)
- initially rk(x) =0
- as soon as x is NOT a root, rk(x) stays unchanged

» for Union(x , y) make node with smaller rank
child of the other
in case of tie, increment one of the
X4 Y7 ranks

A A—xD

X4

A A —xD\

Heuristic 2. Path compression

when performin a Find(x) operation make
all nodes in the "findpath” children of the root

_l
W |

/?T?\ Find(4) jTN
2 15, 1 — — 1
79 :6' 7 9 29 23
"ﬁ\
11129
M
I4|
)

nN
w
—
O1

sequence of Union and Find operation

Explicit cost model:

cost(op) = # times some node gets a new parent

Time for Union(x ,y) = O(1) = O(cost(Union(x,y)))
Time for Find(x) = O(# of nodes on findpath)
= O(2+ cost(Find(x)))

For analysis assume all Unions are performed
first, but Find-paths are only followed (and
compressed) to correct node.

For analysis assume all Unions are performed
first, but Find-paths are only followed (and
compressed) to correct node.

Ay %

.—)X

cost(compress(x,y)) = # of nodes that get a
hew parent

/
’C/

/ —

/ compress(X, co)

/ /

K — —~ A AAA
. / compress(X, oo

K —— A A Ak
. / compress(X, co)

7 _Qa.”

cost(compress(x, «))

of nodes that get a
hew parent

= 0

Problem formulation

F forest on node set X
C sequence of compress operations on F

|C| = # of true compress operations in C
(rootpath compresses excluded)

cost(C) = 2.(cost of individual operations)

F forest on node set X
C sequence of compress operations on F

|C| = # of true compress operations in C
(rootpath compresses excluded)

cost(C) = 2.(cost of individual operations)

Dissection of a forest F with node set X :

partition of X into "top part” X,
and "bottom part” X,

so that top part X, is "upwards closed”,

i.e. xeX, = every ancestor of x is in X, also

Dissection of a forest F with node set X :

partition of X into "top part” X,
and "bottom part” X,

so that top part X, is "upwards closed”,

i.e. xeX, = every ancestor of x is in X, also

JANEA

L N\

Dissection of a forest F with node set X :

partition of X into "top part” X,
and "bottom part” X,

so that top part X, is "upwards closed”,

i.e. xeX, = every ancestor of x is in X, also

AL

Note: X,, X, dissection for F
F' obtained from F by - =
sequence of path compressions |

Ay, Xy 18
dissection for F'

Main Lemma:
C ... sequence of operations on F with node set X
X:, X, dissection for F inducing subforests 7., 7,

Main Lemma:
C ... sequence of operations on F with node set X
X., X, dissection for F inducing subforests 7., 7,

= compression sequences
C, for 7, and C, for F,
with

Gl + 1G] < |C]

and

cost(C) < cost(C,)+cost(C.)+ |X,|+|C.]

Proof: 1) How to get C, and C. from C:

Proof: 1) How to get C, and C. from C:

compression paths from C

X
case 1: x X into C.

>

Proof: 1) How to get C, and C. from C:

compression paths from C

case 2:

Y Y
A A .
case 1: : x into C.
Y
X

into C,

Proof: 1) How to get C, and C. from C:

compression paths from C

Y

><

case 1: s -
Y
Y y
. /\ :
case 2: ; into C,
X
y Y
A » into C,
case 3: x X
X 00 .
A into C,

“rootpath compress”

/ /

A

A AAA

compress(x, oo)

“rootpath compress”

K —— A AAA
. / compress(X, co)

cost(compress(x, o)) = # of nodes that get a
hew parent

0

Proof: C.l+[C] < |C]

compression paths from C

~
><

case 1: s -
Y
A y
. /\ :
case 2: ; into C,
X
y Y
A » into C,
case 3: x X
X oo
A 'rntoj_b
X =~

cost(C) < cost(C,)+ cost(C,)+ |X,|+|C]

cost(C) &

green node gets new green parent: | accounted by cost(C,)

brown node gets new brown parent: | accounted by cost(C,)

brown hode gets new green parent: | accounted by |X, |
for the first time

brown hode gets new green parent: | accounted by |C,|
again

cost(C) < cost(C,)+ cost(C,)+ |X,|+|C]

cost(C) &

green node gets new green parent: | accounted by cost(C,)

brown node gets new brown parent: | accounted by cost(C,)

brown hode gets new green parent: | accounted by |X, |
for the first time - #roots(Fy,)

brown hode gets new green parent: | accounted by |C,|
again

cost(C) < cost(C,) + cost(C.) + | X, | - #roots(F,) + |C. |

cost(C) &

green node gets new green parent: | accounted by cost(C,)

brown node gets new brown parent: | accounted by cost(C,)

brown hode gets new green parent: | accounted by |X, |
for the first time - #roots(Fy,)

brown hode gets new green parent: | accounted by |C,|
again

Main Lemma’:
C ... sequence of operations on F with node set X
X:, X, dissection for F inducing subforests 7., 7,

= compression sequences
C, for 7, and C, for F,
with

Gl + 1G] < |C]

and

cost(C) < cost(C,)+ cost(C,)
+ | X, | - #roots(7,) + |C.|

f(m,n) ... maximum cost of any compression
sequence C with |C|=m in an arbitrary
forest with n nodes.

Claim: f(m,n) < (m+n)-log,n

Claim: f(m,n) < (m+n)-log,n

Claim: f(m,n) < (m+n)-log,n

Proof:
forest F

|X|=n

C compression sequence |C|=m

Claim: f(m,n) < (m+n)-log,n

Proof:
forest F

|X|=n

C compression sequence

Claim: f(m,n) < (m+n)-log,n

Proof:
forest F

|X|=n

C compression sequence

Main Lemma = 3 C,, C,

cost(C) < cost(C,)

|C|=m
ICol+|Ci | < |C

my+ m, < m

+ cost(C,)

+ [Xl + 1G4

Claim: f(m,n) < (m+n)-log,n

Proof:
forest F

|X|=n

C compression sequence

Main Lemma = 3 C,, C,

cost(C) < cost(C,)

|C|=m
IC|+|C| < |C]

mg+ m, < m

+ cost(C,)

+ [Xl + 1G4

Induction: < (my+n/2)log n/2 + (my+n/2)logn/2 + n/2+ m;

Claim: f(m,n) < (m+n)-log,n

Proof:) e
forest F Xz T | X;1=1X,|=n/2
Fy %

C compression sequence |C|=m

Main Lemma = 3C,C, |C|+|C.| < |C]
m,+ m. < m

cost(C) < cost(C,) + cost(C.) +|X,|+|C]

Induction: < (my+n/2)log n/2 + (my+n/2)logn/2 + n/2+ m;

< (mp+rmi+n/2+n/2)logn/2 + n+ m

Claim: f(m,n) < (m+n)-log,n

Proof:) e
forest F Xz T | X;1=1X,|=n/2
Fy %

C compression sequence |C|=m

Main Lemma = 3C,C, |C|+|C.| < |C]
m,+ m. < m

cost(C) < cost(C,) + cost(C.) +|X,|+|C]

Induction: < (my+n/2)log n/2 + (my+n/2)logn/2 + n/2+ m;

< (mp+rmi+n/2+n/2)logn/2 + n+ m

< (m+n)-log,n/2 + (m+n) = (m+n)-log,n

Corollary:
Any sequence of m Union, Find operations
in a universe of n elements that uses
arbitrary linking and path compression
takes time at most

O((m+n)-log n)

Corollary:
Any sequence of m Union, Find operations
in a universe of n elements that uses
arbitrary linking and path compression
takes time at most

O((m+n)-log n)

By choosing a dissection that is "unbalanced”

in relation to m/n one can prove a better
bound of

O((m+n)-log /141 N)

Def: F forest, x node in F
r(x) = height of subtree rooted at x
(r(leaf)=0)

Fis a rank forest, if

for every node x
for every i with 0<i<r(x),
there is a child y;, of x with r(y,)=i .

Def: F forest, x node in F
r(x) = height of subtree rooted at x
(r(leaf)=0)

Fis a rank forest, if

for every node x
for every i with 0<i<r(x),
there is a child y;, of x with r(y,)=i .

Note: Union by rank produces rank forests |

Def: F forest, x node in F
r(x) = height of subtree rooted at x
(r(leaf)=0)

Fis a rank forest, if

for every node x
for every i with O<i<r(x),
there is a child y;, of x with r(y,)=i .

Note: Union by rank produces rank forests |

Lemma: r(x)=r = x has at least r children.

Def: F forest, x node in F
r(x) = height of subtree rooted at x
(r(leaf)=0)

Fis a rank forest, if

for every node x
for every i with O<i<r(x),
there is a child y;, of x with r(y,)=i .

Note: Union by rank produces rank forests |

Lemma: r(x)=r = x has at least r children and > 2- descendants.

Inheritance Lemma:

F rank forest with maximum rank r and node set X

seN: X, = {xeX | r(x)>s } Fis

induced forests
X ={xeX | r(x)<s} F_s

Inheritance Lemma:

F rank forest with maximum rank r and node set X

seN: X, = {xeX | r(x)>s } Fis

induced forests
X ={xeX | r(x)<s} F_s

i) X_,,X_. isadissection for F

ii) F_, is a rank forest with maximum
rank <s

iii) 7_. is a rank forest with maximum
rank < r-s-1

iv) | X_.| < |X]|/ 25

Inheritance Lemma:

F rank forest with maximum rank r and node set X

seN: X, = {xeX | r(x)>s } Fis

induced forests
X ={xeX | r(x)<s} F_s

i) X_,,X_. isadissection for F

ii) 7., is a rank forest with maximum { /- \
rank < s e =
si/_ %\

iii) F_. is a rank forest with maximum
rank < r-s-1

f(m,n,r) = maximum cost of any compression
sequence C, with |C|=m, in rank
forest F with n nodes and
maximum rank r.

f(m,n,r) = maximum cost of any compression
sequence C, with |C|=m, in rank
forest F with n nodes and
maximum rank r.

Trivial bounds:
f(m,nr) <(r-1)n
f(m,nr) < (r-1)m

(

. /[F O\ }r—s—1<r' | X,ssl = n; |Ci| = m,

V4 Fi \]-s IX_gl=n,=n-n, [Cy| = my

cost(C) < cost(C,) + cost(C,) + |X,| -#rts(F)+ |C.]

/ F O\ }r -s-1<r [Xl = 0y |G| = m,
ro-

}s Xodzmznn 16l <,

cost(C) < cost(C.) + cost(C,) + |X,| - #rts(F,)+ |C.]

S f(m-l-,n-r,r"'S"l) +

. / £\ }r -s-1<r Xl =y 1Ci| = m,

}s Xodzmznn 16l <,

cost(C) < cost(C.) + cost(C,) + |X,| - #rts(F,)+ |C.]

< f(min,r-s-1) + f(m,,n,s) +

/ F O\ }r -s-1<r [Xl = 0y |C;| = m,
ro<

}s Xodzmznn 16l <,

cost(C) < cost(C.) + cost(C,) + |X,| - #rts(F,)+ |C.]

< f(mf,nf,r‘s"l) + f(mb,nb,S) + Nn-n; -

(

. /[F O\ }r—s—1<r' | X,ssl = n; |Ci| = m,

V4 Fi \]-s IX_gl=n,=n-n, [Cy| = my

cost(C) < cost(C,) + cost(C,) + |X,| -#rts(F)+ |C.]

< f(mgnr-s-1) + f(myn,s) + n-n; = (s+l)n, +

(

ro< / fT \ }r'-S-l <r |X>SI = N |C1_| = m,

\/ fb \ }S |X§s =N, =Nn-n; |Cb| =mgy

cost(C) < cost(C.) + cost(C,) + |X,| - #rts(F,)+ |C.]

< f(m;,n; r-s-1) + f(my,n,,s) + n-n, - (s+1)-n, +

Each node in 7, has at least s+1 children in 7, ,
and they must all be different roots of 7, .

(

ro< / fT \ }r'-S-l <r |X>SI = N |C1_| = m,

\/ fb \ }S |X§s =N, =Nn-n; chl =mgy

cost(C) < cost(C.) + cost(C,) + |X,| - #rts(F,)+ |C.]

< f(my,n;,r-s-1) + f(my,n,,s) + n-n, = (s+1)-n, + m;

Each node in 7, has at least s+1 children in 7, ,
and they must all be different roots of 7, .

(

o /[F O\ }r—s-1<r | X,ssl = n; |C;| = m,

\/ fb \ }S |X§s =N, =Nn-n; chl =mgy

cost(C) < cost(C.) + cost(C,) + |X,| - #rts(F,)+ |C.]

< f(my,n;r-s-1) + f(m,,n,,s) + n-n, - (s+l).n, + m,

Each node in 7, has at least s+1 children in 7, ,
and they must all be different roots of 7, .

f(mn,r) < f(myn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

f(mn,r) < f(myn;r-s-1) + f(m,,n,,s) + n-(s+2)-n, + m,

n1-+nb - n
m1-+mb<m

O<s<r

f(mn,r) < f(mn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

n1-+nb = n
m1-+mbgm

Assume: f(u,v,p) < k-u+v-g(p)

O<s<r

f(mn,r) < f(myn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

ne+n, = n
m1-+mbgm

Assume: f(u,v,p) < ku+v-g(p)

O<s<r

f(m,n,r) < km; + n;-g(r-s-1) + f(my,n,,s) + n = (s+2)-n, + m;,

S km‘l‘ * nfg(r) + f(mb,nb,S) tn- Sn'l' + mT

f(mn,r) < f(myn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

ne+n, = n
m1-+mbgm

Assume: f(u,v,p) < ku+v-g(p)

O<s<r

f(m,n,r) < km; + n;-g(r-s-1) + f(my,n,,s) + n = (s+2)-n, + m;,

S km‘l‘ * nfg(r) + f(mb,nb,S) tn- Sn'l' + mT

choose s = g(r)

f(mn,r) < f(myn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

n,+n, = n
m1-+mbgm

Assume: f(u,v,p) < k-u+v-g(p)

O<s<r

f(m,nr) < km, + n.-g(r-s-1) + f(m,,n,,s) + n = (s+2)-n; + m,
< km; +neg(r) + f(Myn,s) +n=-sn, +m

choose s = g(r)
f(m,n,r) < (k+l)m, + f(my,n,,s) + n

< (k+1)-m; + f(m,,n,s) + n

s =g(r)

f(m,nr) < (k+1)m, + f(m,,h,s) + n

s=g(r)

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

s=g(r) om

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

s=g(r) om

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

f(m,nr) - (k#1)m < f(m,,n,s) - (k+1)m, +n

s=g(r) m

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

f(m,nr) - (k#1)m < f(m,,n,s) - (k+1)m, +n

o(m,n,r) < ¢(m,,ng(r)) +n

s=g(r) m

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

f(m,nr) - (k#1)m < f(m,,n,s) - (k+1)m, +n

o(m,n,r) < ¢(m,,ng(r)) +n

o(m,n,r) < n-gi(r)

s=g(r) m

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

f(m,nr) - (k#1)m < f(m,,n,s) - (k+1)m, +n

o(m,n,r) < ¢(m,,ng(r)) +n

o(m,n,r) < n-gi(r)

IN

f(m,n,r) (k+1) m+n-qg'(r)

Shifting Lemma:

Shifting Lemma:

Shifting Corollary:

Trivial bound: f(m,n,r) < n-(r-1)

Trivial bound: f(m,n,r) < n-(r-1)
= Om + n-(r-1)

Trivial bound: f(m,n,r) < n-(r-1)
= Om + n-(r-1)

g(r) = r-1
g(r)=r-1

f(mn,r) < f(myn,r-s-1) + f(my,n,,s) + n-(s+2)-n, +m;,

nT"‘nb = n

O<s<r
m.+m, <m

f(mn,r) < f(myn,r-s-1) + f(my,n,,s) + n-(s+2)-n, +m;,

nT"‘nb = n

O<s<r
m.+m, <m

Trivial bound: f(u,v,p) < v-(p-1)

f(mn,r) < f(myn,r-s-1) + f(my,n,,s) + n-(s+2)-n, +m;,

n+n, = n

O<s<r
m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,nr) < ny(r-s-2) + f(my,n,s) + n=(s+2)n, +m,

f(mn,r) < f(myn,r-s-1) + f(my,n,,s) + n-(s+2)-n, +m;,

n+n, = n

O<s<r
m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,nr) < ny(r-s-2) + f(my,n,s) + n=(s+2)n, +m,

< ny(r-2s-4) + f(my,n,,s) + n+m;,

f(mn,r) < f(myn,r-s-1) + f(my,n,,s) + n-(s+2)-n, +m;,

n+n, = n

O<s<r
m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,nr) < ny(r-s-2) + f(my,n,s) + n=(s+2)n, +m,

< ny(r-2s-4) + f(my,n,,s) + n+m;,

sets=|r/2|

f(m,nr) < f(myn;r-s-1) + f(my,n,,s) + n=(s+2)n, + m;

n+n, = n

O<s<r
m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,n,r) S nT'(r"S’Z) + f(mb,nb,S) + N- (S"‘Z)'n.l."‘ mT

< nT'(r'-ZS-4) + f(mb,nb,S) + N+ M,

sets=|r/2|

f(mn,r) < f(m,n,r/2) +n+m.

f(m,nr) < f(myn;r-s-1) + f(my,n,,s) + n=(s+2)n, + m;

n+n, = n

O<s<r
m.+m, <m —

Trivial bound: f(u,v.p) < v-(p-1)

f(m,n,r) S nT'(r"S’Z) + f(mb,nb,S) + N- (S"‘Z)'n.l."‘ mT

< ny(r-2s-4) + f(my,n,,s) + n+m;

sets=|r/2|
f(mn,r) < f(m,n,r/2) +n+m.

f(m,n,r') - < f(mb,nb,r'/Z) -my, +N

f(mn,r) < f(myn,r-s-1) + f(my,n,,s) + n-(s+2)-n, +m;,

n+n, = n

O<s<r
m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,nr) < ny(r-s-2) + f(my,n,s) + n=(s+2)n, +m,

< ny(r-2s-4) + f(my,n,,s) + n+m;,

sets=|r/2|
f(mn,r) < f(m,n,r/2) +n+m.

f(m,n,r') -m < f(mb,nb,r'/Z) -my, +N

f(m,nr) <m+nlogr

We know bound: f(m,nr) <m+n-logr

We know bound: f(m,nr) <m+n-logr

Therefore for any i> 0 : i
——
f(m,n,r) < (i+1)-m + n.log™-"(r)

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :
i

Define ofr) = min{ i | log™—(r) < i}

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :
i

Define ofr) = min{ i | log™—(r) < i}

f(m,n,r) < (m+n)(1+o(r))

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :
Define a(r) = min{ i | Iog Slr) <i)
f(m,n,r) < (m+n)(1+o(r))

< (m+n)(1+a(log n))

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :
i

—
Define a(m,n,r) = min{ i | log”*(r) < m/n}

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :
i

—
Define a(m,n,r) = min{ i | log”*(r) < m/n}

f(m,n,r) < m(2+o(m,n,r))

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :
i

—
Define a(m,n,r) = min{ i | log”*(r) < m/n}

f(mnr) < m(2+oc(m,n,r))

Define a(m,n) = min{ i | log™"(log n) < m/n}

S
Foranyi>0: f(m,nn,r) < (i+1)m + nlog™-"(r)

Choice of i :
i

—
Define a(m,n,r) = min{ i | log”*(r) < m/n}

f(mnr) < m(2+oc(m,n,r))

Define a(m,n) = min{ i | log™"(log n) < m/n}

f(m,n,r) < m(2+a(m,n))

