The Union-Find Problem
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Typical Divide-and-Conquer:
If problem set S has size n=1, then nothing to be done.

Otherwise:
* partition S into subproblems of size < f(n)

* solve each of the n/f(n) subproblems recursively

* combine subsolutions.
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Typical Divide-and-Conquer:
If problem set S has size n=1, then nothing to be done.

Otherwise:
* partition S into subproblems of size < f(n)

* solve each of the n/f(n) subproblems recursively

* combine subsolutions.

( f needs to satisfy contraction condition f(n)<n for n>1.)
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Properties:
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) f(fm) = f(n)-1

2) f a“nice" compaction

= f~ a "nice" compaction and
f* “much smaller” than f
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Impementation

* forest F of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group
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Impementation

* forest F of rooted trees with node set S

* one tree for each group in current partition
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Find( x ) follow path from x to root



Heuristic 1: “linking by rank”

- each node x carries integer rk(x)
- initially rk(x) =0
- as soon as x is NOT a root, rk(x) stays unchanged

» for Union( x , y ) make node with smaller rank
child of the other
in case of tie, increment one of the
X4 Y7 ranks

A A—xD

X4

A A —xD\



Heuristic 2. Path compression

when performin a Find( x ) operation make
all nodes in the "findpath” children of the root
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sequence of Union and Find operation

Explicit cost model:

cost( op ) = # times some node gets a new parent

Time for Union(x ,y) = O(1) = O(cost( Union(x,y)))
Time for Find( x) = O(# of nodes on findpath )
= O( 2+ cost( Find(x)) )



For analysis assume all Unions are performed
first, but Find-paths are only followed (and
compressed) to correct node.
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Problem formulation

F forest on node set X
C sequence of compress operations on F

|C| = # of true compress operations in C
(rootpath compresses excluded)

cost(C) = 2.( cost of individual operations )
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Dissection of a forest F with node set X :

partition of X into "top part” X,
and "bottom part” X,

so that top part X, is "upwards closed”,

i.e. xeX, = every ancestor of x is in X, also
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Dissection of a forest F with node set X :

partition of X into "top part” X,
and "bottom part” X,

so that top part X, is "upwards closed”,

i.e. xeX, = every ancestor of x is in X, also
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Note: X,, X, dissection for F
F' obtained from F by - =
sequence of path compressions |

Ay, Xy 18
dissection for F'
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C ... sequence of operations on F with node set X
X:, X, dissection for F inducing subforests 7., 7,
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X., X, dissection for F inducing subforests 7., 7,

=  compression sequences
C, for 7, and C, for F,
with

Gl + 1G] < |C]

and

cost(C) < cost(C,)+cost(C.)+ |X,|+|C.]
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Proof: 1) How to get C, and C. from C:

compression paths from C
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case 1: s -
Y
Y y
. /\ :
case 2: ; into C,
X
y Y
A » into C,
case 3:  x X
X 00 .
A into C,
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“rootpath compress”

K —— A AAA
. / compress( X, co )

cost( compress( x, o ) ) = # of nodes that get a
hew parent
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Proof: C.l+[C] < |C]

compression paths from C

~
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case 1: s -
Y
A y
. /\ :
case 2: ; into C,
X
y Y
A » into C,
case 3:  x X
X oo
A 'rntoj_b
X =~



cost(C) < cost(C, )+ cost(C,)+ |X,|+|C]

cost( C) &

green node gets new green parent: | accounted by cost(C,)

brown node gets new brown parent: | accounted by cost(C,)

brown hode gets new green parent: | accounted by |X, |
for the first time

brown hode gets new green parent: | accounted by |C,|
again
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cost( C) &

green node gets new green parent: | accounted by cost(C,)

brown node gets new brown parent: | accounted by cost(C,)

brown hode gets new green parent: | accounted by |X, |
for the first time - #roots( Fy, )

brown hode gets new green parent: | accounted by |C,|
again




Main Lemma’:
C ... sequence of operations on F with node set X
X:, X, dissection for F inducing subforests 7., 7,

=  compression sequences
C, for 7, and C, for F,
with

Gl + 1G] < |C]

and

cost(C ) < cost(C, )+ cost(C,)
+ | X, | - #roots(7,) + |C.|




f(m,n) ... maximum cost of any compression
sequence C with |C|=m in an arbitrary
forest with n nodes.

Claim:  f(m,n) < (m+n)-log,n
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Claim:  f(m,n) < (m+n)-log,n

Proof: ) e
forest F Xz T | X;1=1X,|=n/2
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C compression sequence |C|=m

Main Lemma = 3C,C, |C|+|C.| < |C]
m,+ m. < m

cost(C) < cost(C,) + cost(C.) +|X,|+|C]

Induction: < (my+n/2)log n/2 + (my+n/2)logn/2 + n/2+ m;

< (mp+rmi+n/2+n/2)logn/2 + n+ m

< (m+n)-log,n/2 + (m+n) = (m+n)-log,n



Corollary:
Any sequence of m Union, Find operations
in a universe of n elements that uses
arbitrary linking and path compression
takes time at most

O( (m+n)-log n)




Corollary:
Any sequence of m Union, Find operations
in a universe of n elements that uses
arbitrary linking and path compression
takes time at most

O( (m+n)-log n)

By choosing a dissection that is "unbalanced”

in relation to m/n one can prove a better
bound of

O( (m+n)-log /141 N)







Def: F forest, x node in F
r(x) = height of subtree rooted at x
( r(leaf)=0 )

Fis a rank forest, if

for every node x
for every i with 0<i<r(x),
there is a child y;, of x with r(y,)=i .
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Def: F forest, x node in F
r(x) = height of subtree rooted at x
( r(leaf)=0 )

Fis a rank forest, if

for every node x
for every i with O<i<r(x),
there is a child y;, of x with r(y,)=i .

Note: Union by rank produces rank forests |

Lemma: r(x)=r = x has at least r children.




Def: F forest, x node in F
r(x) = height of subtree rooted at x
( r(leaf)=0 )

Fis a rank forest, if

for every node x
for every i with O<i<r(x),
there is a child y;, of x with r(y,)=i .

Note: Union by rank produces rank forests |

Lemma: r(x)=r = x has at least r children and > 2- descendants.
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seN: X, = {xeX | r(x)>s } Fis

induced forests
X ={xeX | r(x)<s} F_s
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i) X_,,X_. isadissection for F

ii) F_, is a rank forest with maximum
rank <s

iii) 7_. is a rank forest with maximum
rank < r-s-1

iv) | X_.| < |X]|/ 25



Inheritance Lemma:

F rank forest with maximum rank r and node set X

seN: X, = {xeX | r(x)>s } Fis

induced forests
X ={xeX | r(x)<s} F_s

i) X_,,X_. isadissection for F

ii) 7., is a rank forest with maximum { /- \
rank < s e =
si/_ %\

iii) F_. is a rank forest with maximum
rank < r-s-1




f(m,n,r) = maximum cost of any compression
sequence C, with |C|=m, in rank
forest F with n nodes and
maximum rank r.



f(m,n,r) = maximum cost of any compression
sequence C, with |C|=m, in rank
forest F with n nodes and
maximum rank r.

Trivial bounds:
f(m,nr) <(r-1)n
f(m,nr) < (r-1)m
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and they must all be different roots of 7, .
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O<s<r



f(mn,r) < f(myn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

ne+n, = n
m1-+mbgm

Assume: f(u,v,p) < ku+v-g(p)

O<s<r

f(m,n,r) < km; + n;-g(r-s-1) + f(my,n,,s) + n = (s+2)-n, + m;,

S km‘l‘ * nfg(r) + f(mb,nb,S) tn- Sn'l' + mT



f(mn,r) < f(myn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

ne+n, = n
m1-+mbgm

Assume: f(u,v,p) < ku+v-g(p)

O<s<r

f(m,n,r) < km; + n;-g(r-s-1) + f(my,n,,s) + n = (s+2)-n, + m;,

S km‘l‘ * nfg(r) + f(mb,nb,S) tn- Sn'l' + mT

choose s = g(r)



f(mn,r) < f(myn,r-s-1) + f(m,,n,,s) + n-(s+2)n, + m,

n,+n, = n
m1-+mbgm

Assume: f(u,v,p) < k-u+v-g(p)

O<s<r

f(m,nr) < km, + n.-g(r-s-1) + f(m,,n,,s) + n = (s+2)-n; + m,
< km; +neg(r) + f(Myn,s) +n=-sn, +m

choose s = g(r)
f(m,n,r) < (k+l)m, + f(my,n,,s) + n

< (k+1)-m; + f(m,,n,s) + n
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s=g(r) om

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

f(m,nr) - (k#1)m < f(m,,n,s) - (k+1)m, +n
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f(m,nr) - (k#1)m < f(m,,n,s) - (k+1)m, +n
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s=g(r) m

f(mnr) < (kel)m, + f(myns)+n | -(k+1)-(mg+m,)

f(m,nr) - (k#1)m < f(m,,n,s) - (k+1)m, +n

o(m,n,r) < ¢(m,,ng(r)) +n

o(m,n,r) < n-gi(r)
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f(m,n,r) (k+1) m+n-qg'(r)



Shifting Lemma:




Shifting Lemma:

Shifting Corollary:







Trivial bound: f(m,n,r) < n-(r-1)
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g(r) = r-1
g(r)=r-1
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n+n, = n
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m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,nr) < ny(r-s-2) + f(my,n,s) + n=(s+2)n, +m,

< ny(r-2s-4) + f(my,n,,s) + n+m;,

sets=|r/2|



f(m,nr) < f(myn;r-s-1) + f(my,n,,s) + n=(s+2)n, + m;

n+n, = n

O<s<r
m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,n,r) S nT'(r"S’Z) + f(mb,nb,S) + N- (S"‘Z)'n.l."‘ mT

< nT'(r'-ZS-4) + f(mb,nb,S) + N+ M,

sets=|r/2|

f(mn,r) < f(m,n,r/2) +n+m.



f(m,nr) < f(myn;r-s-1) + f(my,n,,s) + n=(s+2)n, + m;

n+n, = n

O<s<r
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Trivial bound: f(u,v.p) < v-(p-1)

f(m,n,r) S nT'(r"S’Z) + f(mb,nb,S) + N- (S"‘Z)'n.l."‘ mT

< ny(r-2s-4) + f(my,n,,s) + n+m;

sets=|r/2|
f(mn,r) < f(m,n,r/2) +n+m.

f(m,n,r') - < f(mb,nb,r'/Z) -my, +N



f(mn,r) < f(myn,r-s-1) + f(my,n,,s) + n-(s+2)-n, +m;,

n+n, = n

O<s<r
m.+m, <m

Trivial bound: f(u,v.p) < v-(p-1)

f(m,nr) < ny(r-s-2) + f(my,n,s) + n=(s+2)n, +m,

< ny(r-2s-4) + f(my,n,,s) + n+m;,

sets=|r/2|
f(mn,r) < f(m,n,r/2) +n+m.

f(m,n,r') -m < f(mb,nb,r'/Z) -my, +N

f(m,nr) <m+nlogr
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We know bound: f(m,nr) <m+n-logr

Therefore for any i> 0 : i
——
f(m,n,r) < (i+1)-m + n.log™-"(r)
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