The Union-Find Problem

Divide-and-Conquer Recurrences, Baby Version

Divide-and-Conquer Recurrences, Baby Version

Typical Divide-and-Conquer:

If problem set S has size n=1, then nothing to be done.

Otherwise:

- * partition S into subproblems of size < f(n)
- * solve each of the n/f(n) subproblems recursively
- * combine subsolutions.

Divide-and-Conquer Recurrences, Baby Version

Typical Divide-and-Conquer:

If problem set S has size n=1, then nothing to be done.

Otherwise:

- * partition S into subproblems of size < f(n)
- * solve each of the n/f(n) subproblems recursively
- * combine subsolutions.

(f needs to satisfy contraction condition f(n)<n for n>1.)

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = \min \{ k \mid \underbrace{f(f(\cdots f(n)\cdots) \leq 1}_{k \text{ times}} \}$$

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = \min \{ k \mid \underbrace{f(f(\cdots f(n)\cdots) \leq 1}_{k \text{ times}} \}$$

Examples for f*:

f(n)	f*(n)
n-1	n-1
n-2	n/2
n-c	n/c
n/2	log ₂ n
n/c	log _c n
\sqrt{n}	log log n
log n	log*n

Maintain partition of $S = \{1,2,\dots,n\}$ under operations

Maintain partition of $S = \{1,2,\dots,n\}$ under operations

Union(2, 4)

Maintain partition of $S = \{1,2,\dots,n\}$ under operations

Union(2,4)

Find(3) = $\underline{6}$ (representative element)

Impementation

- * forest \mathcal{F} of rooted trees with node set 5
- * one tree for each group in current partition
- * root of tree is representative of the group

Impementation

- * forest \mathcal{F} of rooted trees with node set S
- * one tree for each group in current partition
- * root of tree is representative of the group

Impementation

- * forest \mathcal{F} of rooted trees with node set S
- * one tree for each group in current partition
- * root of tree is representative of the group

Find(x) follow path from x to root

"path follwoing"

Heuristic 1: "linking by rank"

- each node x carries integer rk(x)
- initially rk(x) = 0
- as soon as x is NOT a root, rk(x) stays unchanged
- for Union(x,y) make node with smaller rank child of the other in case of tie, increment one of the

ranks

Heuristic 2: Path compression

when performin a Find(x) operation make all nodes in the "findpath" children of the root

sequence of Union and Find operation

Explicit cost model:

cost(op) = # times some node gets a new parent

```
Time for Union(x,y) = O(1) = O(cost(Union(x,y)))

Time for Find(x) = O(\# of nodes on findpath)

= O(2 + cost(Find(x)))
```

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

"rootpath compress"

"rootpath compress"

"rootpath compress"

"rootpath compress"

 $cost(compress(x, \infty)) = # of nodes that get a new parent$

Problem formulation

- \mathcal{F} forest on node set X
- ${\it C}$ sequence of compress operations on ${\it F}$
- |C| = # of true compress operations in C (rootpath compresses excluded)

 $cost(C) = \sum(cost of individual operations)$

Problem formulation

- F forest on node set X
- ${\it C}$ sequence of compress operations on ${\it F}$
- |C| = # of true compress operations in C (rootpath compresses excluded)

 $cost(C) = \sum(cost of individual operations)$

How large can cost(C) be at most, in terms of |X| and |C|?

```
Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t
and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. x \in X_t \Rightarrow every ancestor of x is in X_t also
```

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. $x \in X_{t} \Rightarrow$ every ancestor of x is in X_{t} also

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_{t} is "upwards closed",

i.e. $x \in X_t \Rightarrow$ every ancestor of x is in X_t also

Note: X_t , X_b dissection for \mathcal{F} \mathcal{F}' obtained from \mathcal{F} by sequence of path compressions

 X_t, X_b is dissection for \mathcal{F}'

Main Lemma:

C ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

Main Lemma:

 \mathcal{C} ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

 \Rightarrow \exists compression sequences C_b for \mathcal{F}_b and C_t for \mathcal{F}_t with

$$|C_{\mathsf{b}}| + |C_{\mathsf{t}}| \leq |C|$$

and

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

compression paths from C

case 1: into C

compression paths from C

case 1: $\frac{1}{x}$ into C_{t} case 2: $\frac{1}{x}$ into C_{b}

compression paths from C

"rootpath compress"

"rootpath compress"

 $cost(compress(x, \infty)) = # of nodes that get a new parent$

Proof:

 $|C_{\mathsf{b}}| + |C_{\mathsf{t}}| \leq |C|$

compression paths from C

into
$$C_{t}$$

into
$$C_b$$

into
$$C_{t}$$

$$\text{in} \neq 0 C_b$$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$

cost(C)

accounted by $cost(C_t)$

brown node gets new brown parent:

green node gets new green parent:

accounted by $cost(C_b)$

brown node gets new green parent: for the first time

accounted by $|X_b|$

brown node gets new green parent:

again

accounted by $|C_t|$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$

cost(C)

green node gets new green parent:

brown node gets new brown parent:

brown node gets new green parent: for the first time

brown node gets new green parent: again

accounted by $cost(C_t)$

accounted by $cost(C_b)$

accounted by $|X_b|$ - #roots(\mathcal{F}_b)

accounted by $|C_{t}|$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| - \#roots(\mathcal{F}_b) + |C_t|$

cost(C)

green node gets new green parent:

brown node gets new brown parent:

brown node gets new green parent: for the first time

brown node gets new green parent:

again

accounted by $cost(C_t)$

accounted by $cost(C_b)$

accounted by $|X_b|$ - #roots(\mathcal{F}_b)

accounted by $|C_{+}|$

Main Lemma':

 \mathcal{C} ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

 \Rightarrow \exists compression sequences C_b for \mathcal{F}_b and C_t for \mathcal{F}_t with

$$|C_b| + |C_t| \leq |C|$$

and

f(m,n) ... maximum cost of any compression sequence C with |C|=m in an arbitrary forest with n nodes.

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

Proof:

|C|=m C compression sequence

Proof:

forest ${\cal F}$

$$|X_{+}| = |X_{b}| = n/2$$

Proof:

forest F

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence |C|=m

Main Lemma
$$\Rightarrow \exists C_{+}, C_{b} |C_{b}| + |C_{+}| \leq |C|$$

 $m_{b} + m_{+} \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Proof:

forest \mathcal{F}

$$\mathcal{F}_{b}$$
 X_{b}

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence |C|=m

Main Lemma
$$\Rightarrow \exists C_{+}, C_{b} |C_{b}| + |C_{+}| \leq |C|$$

 $m_{b} + m_{+} \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction: $\leq (m_b+n/2)\log n/2 + (m_t+n/2)\log n/2 + n/2 + m_t$

Proof:

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence |C|=m

Main Lemma $\Rightarrow \exists C_+, C_b | |C_b| + |C_+| \leq |C|$ $m_b + m_t \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction: $\leq (m_h+n/2)\log n/2 + (m_++n/2)\log n/2 + n/2 + m_+$

$$\leq (m_b + m_+ + n/2 + n/2) \log n/2 + n + m$$

Proof:

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence |C|=m

Main Lemma
$$\Rightarrow \exists C_{+}, C_{b} |C_{b}| + |C_{+}| \leq |C|$$

 $m_{b} + m_{+} \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction:
$$\leq (m_b+n/2)\log n/2 + (m_t+n/2)\log n/2 + n/2 + m_t$$

$$\leq (m_b+m_t+n/2+n/2)\log n/2 + n + m$$

 $\leq (m+n)\cdot\log_2 n/2 + (m+n) = (m+n)\cdot\log_2 n$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

 $O((m+n) \cdot \log n)$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

 $O((m+n) \cdot \log n)$

By choosing a dissection that is "unbalanced" in relation to m/n one can prove a better bound of

 $O((m+n)\cdot\log_{\lceil m/n\rceil+1}n)$

```
Def: \mathcal{F} forest, \times node in \mathcal{F}
       r(x) = height of subtree rooted at x
                       r(leaf) = 0
        \mathcal{F} is a rank forest, if
                for every node x
                   for every i with 0 \le i < r(x),
         there is a child y_i of x with r(y_i)=i.
```

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!

Lemma: $r(x)=r \Rightarrow x$ has at least r children.

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!

Lemma: $r(x)=r \Rightarrow x$ has at least r children and $\geq 2^r$ descendants.

Inheritance Lemma:

Frank forest with maximum rank r and node set X

Inheritance Lemma:

Frank forest with maximum rank r and node set X

$$\mathbf{S} \in \mathbb{N}: \quad \mathbf{X}_{>s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) > s \} \qquad \mathcal{F}_{>s} \quad \text{induced forests} \\ \mathbf{X}_{\leq s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) \leq s \} \qquad \mathcal{F}_{\leq s} \quad \text{induced forests}$$

- i) $X_{\leq s}$, $X_{>s}$ is a dissection for \mathcal{F}
- ii) $\mathcal{F}_{\leq s}$ is a rank forest with maximum rank $\leq s$
- iii) $\mathcal{F}_{>s}$ is a rank forest with maximum rank $\leq r-s-1$
- iv) $|X_{>s}| \le |X| / 2^{s+1}$

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

$$\mathbf{S} \in \mathbb{N}: \quad \mathbf{X}_{>s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) > \mathbf{s} \} \qquad \mathcal{F}_{>s} \quad \text{induced forests} \\ \mathbf{X}_{\leq s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) \leq \mathbf{s} \} \qquad \mathcal{F}_{\leq s} \quad \text{induced forests}$$

- i) $X_{\leq s}$, $X_{>s}$ is a dissection for \mathcal{F}
- ii) $\mathcal{F}_{\leq s}$ is a rank forest with maximum rank $\leq s$
- iii) $\mathcal{F}_{>s}$ is a rank forest with maximum rank $\leq r-s-1$

f(m,n,r) = maximum cost of any compression sequence C, with <math>|C|=m, in rank forest \mathcal{F} with n nodes and maximum rank r.

f(m,n,r) = maximum cost of any compression sequence C, with <math>|C|=m, in rank forest \mathcal{F} with n nodes and maximum rank r.

Trivial bounds:

$$f(m,n,r) \leq (r-1) \cdot n$$

$$f(m,n,r) \leq (r-1) \cdot m$$

$$cost(C) \leq cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

$$cost(C) \leq cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

$$\leq f(m_t, n_t, r-s-1) +$$

$$r \left\{ \begin{array}{c|c} & & & & |X_{>_{S}}| = n_{t} & |C_{t}| = m_{t} \\ \hline & \mathcal{F}_{b} & & |X_{\leq s}| = n_{b} = n - n_{t} & |C_{b}| = m_{b} \end{array} \right.$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| - \#rts(\mathcal{F}_{b}) + |C_{t}|$$

$$\le f(m_{t}, n_{t}, r-s-1) + f(m_{b}, n_{b}, s) +$$

$$r \left\{ \begin{array}{c|c} & & & & |X_{>_{S}}| = n_{t} & |C_{t}| = m_{t} \\ \hline & \mathcal{F}_{b} & & |X_{\leq s}| = n_{b} = n - n_{t} & |C_{b}| = m_{b} \end{array} \right.$$

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

$$\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t -$$

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

$$\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t - (s+1) \cdot n_t +$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| - \#rts(\mathcal{F}_{b}) + |C_{t}|$$

$$\le f(m_{t}, n_{t}, r-s-1) + f(m_{b}, n_{b}, s) + n-n_{t} - (s+1) \cdot n_{t} +$$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$r \left\{ \begin{array}{c|c} & & & & |X_{>s}| = n_{t} & |C_{t}| = m_{t} \\ \hline & & & |X_{\leq s}| = n_{b} = n - n_{t} & |C_{b}| = m_{b} \end{array} \right.$$

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

 $\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t - (s+1) \cdot n_t + m_t$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$r \left\{ \begin{array}{c|c} & & & & & |X_{>s}| = n_{t} & |C_{t}| = m_{t} \\ \hline & & & & |X_{\leq s}| = n_{b} = n - n_{t} & |C_{b}| = m_{b} \end{array} \right.$$

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

 $\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t - (s+1) \cdot n_t + m_t$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = n$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) & \leq k \cdot m_{t} + n_{t} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t} \\ & \leq k \cdot m_{t} + n_{t} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{t} + m_{t} \end{split}$$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = n$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) & \leq k \cdot m_{t} + n_{t} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t} \\ & \leq k \cdot m_{t} + n_{t} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{t} + m_{t} \end{split}$$

choose s = g(r)

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = n$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) & \leq k \cdot m_{t} + n_{t} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t} \\ & \leq k \cdot m_{t} + n_{t} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{t} + m_{t} \end{split}$$

choose
$$s = g(r)$$

 $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n_b,s) + n$
 $\le (k+1) \cdot m_t + f(m_b,n,s) + n$

$$s = g(r)$$

$$f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$$

$$s = g(r)$$

$$f(m,n,r) \leq (k+1) \cdot m_{t} + f(m_{b},n,s) + n \qquad -(k+1) \cdot (m_{b} + m_{t})$$

$$s = g(r)$$
 m $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$ $-(k+1) \cdot (m_b + m_t)$

$$s = g(r)$$
 m $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$ $-(k+1) \cdot (m_b + m_t)$

$$f(m,n,r) - (k+1)\cdot m \le f(m_b,n,s) - (k+1)\cdot m_b + n$$

$$s = g(r)$$
 m $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$ $-(k+1) \cdot (m_b + m_t)$

$$f(m,n,r) - (k+1) \cdot m \le f(m_b,n,s) - (k+1) \cdot m_b + n$$

 $\phi(m,n,r) \le \phi(m_b,n,g(r)) + n$

$$s = g(r)$$
 m $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$ $-(k+1) \cdot (m_b + m_t)$

$$f(m,n,r) - (k+1) \cdot m \leq f(m_b,n,s) - (k+1) \cdot m_b + n$$

$$\phi(m,n,r) \leq \phi(m_b,n,g(r)) + n$$

$$\phi(m,n,r) \leq n \cdot g^*(r)$$

$$s = g(r)$$

$$f(m,n,r) \leq (k+1) \cdot m_{+} + f(m_{b},n,s) + n$$

$$-(k+1) \cdot (m_{b}+m_{+})$$

$$f(m,n,r) - (k+1) \cdot m \le f(m_b,n,s) - (k+1) \cdot m_b + n$$

 $\phi(m,n,r) \le \phi(m_b,n,g(r)) + n$

$$\phi(m,n,r) \leq n \cdot g^*(r)$$

$$f(m,n,r) \leq (k+1) \cdot m + n \cdot g^*(r)$$

Shifting Lemma:

```
\begin{split} &\text{If } f(m,n,r) \leq k \cdot m + n \cdot g(r) \\ &\text{then also} \quad f(m,n,r) \leq (k+1) \cdot m + n \cdot g^*(r) \end{split}
```

Shifting Lemma:

```
\begin{split} &\text{If } f(m,n,r) \leq k \cdot m + n \cdot g(r) \\ &\text{then also} \quad f(m,n,r) \leq (k+1) \cdot m + n \cdot g^*(r) \end{split}
```

Shifting Corollary:

```
If f(m,n,r) \leq k \cdot m + n \cdot g(r) ithen also f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r) for any i \geq 0
```

```
\begin{split} &\text{If } f(m,n,r) \leq k \cdot m + n \cdot g(r) \\ &\text{then also} \quad f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**\dots^*}(r) \\ &\text{for any } i \geq 0 \end{split}
```

```
If f(m,n,r) \leq k \cdot m + n \cdot g(r) then also f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r) for any i \geq 0
```

Trivial bound: $f(m,n,r) \leq n \cdot (r-1)$

```
If f(m,n,r) \leq k \cdot m + n \cdot g(r) then also f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**\dots^*}(r) for any i \geq 0
```

Trivial bound:
$$f(m,n,r) \le n \cdot (r-1)$$

= $0 \cdot m + n \cdot (r-1)$

If
$$f(m,n,r) \leq k \cdot m + n \cdot g(r)$$
 then also $f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r)$ for any $i \geq 0$

Trivial bound:
$$f(m,n,r) \le n \cdot (r-1)$$

= $0 \cdot m + n \cdot (r-1)$

$$g(r) = r-1$$

 $g^*(r) = r-1$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$f(m,n,r) \leq n_{t} \cdot (r-s-2) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t}$$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = n$$
 $0 \le s < r$

$$f(m,n,r) \le n_{t} \cdot (r-s-2) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t}$$

 $\le n_{t} \cdot (r-2s-4) + f(m_{b},n_{b},s) + n + m_{t}$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = n$$
 $0 \le s < r$

set s = | r/2 |

$$f(m,n,r) \le n_{t} \cdot (r-s-2) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t}$$

 $\le n_{t} \cdot (r-2s-4) + f(m_{b},n_{b},s) + n + m_{t}$

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = \frac{n}{m}$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) &\leq n_{t} \cdot (r\text{-}s\text{-}2) \, + \, f(m_{b},n_{b},s) \, + \, n \, - \, (s\text{+}2) \cdot n_{t} \, + \, m_{t} \\ &\leq n_{t} \cdot (r\text{-}2s\text{-}4) \, + \, f(m_{b},n_{b},s) \, + \, n \, + \, m_{t} \\ \text{set } s &= \lfloor \, r/2 \, \rfloor \\ f(m,n,r) &\leq f(m_{b},n_{b},r/2) \, + \, n \, + \, m_{t} \end{split}$$

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = n$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) &\leq n_{t} \cdot (r-s-2) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t} \\ &\leq n_{t} \cdot (r-2s-4) + f(m_{b},n_{b},s) + n + m_{t} \\ set s &= \lfloor r/2 \rfloor \\ f(m,n,r) &\leq f(m_{b},n_{b},r/2) + n + m_{t} \\ f(m,n,r) - m &\leq f(m_{b},n_{b},r/2) - m_{b} + n \end{split}$$

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$\begin{split} f(m,n,r) &\leq n_{t} \cdot (r\text{-}s\text{-}2) \, + \, f(m_{b},n_{b},s) \, + \, n - (s\text{+}2) \cdot n_{t} \, + \, m_{t} \\ &\leq n_{t} \cdot (r\text{-}2s\text{-}4) \, + \, f(m_{b},n_{b},s) \, + \, n + m_{t} \\ \text{set } s &= \lfloor \, r/2 \, \rfloor \\ f(m,n,r) &\leq f(m_{b},n_{b},r/2) \, + \, n + \, m_{t} \\ f(m,n,r) &- \, m \leq f(m_{b},n_{b},r/2) - \, m_{b} \, + \, n \\ \hline f(m,n,r) &\leq m + n \cdot \log r \end{split}$$

```
\begin{split} &\text{If } f(m,n,r) \leq k \cdot m + n \cdot g(r) \\ &\text{then also} \quad f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**\dots^*}(r) \\ &\text{for any } i \geq 0 \end{split}
```

```
If f(m,n,r) \le k \cdot m + n \cdot g(r) then also f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**\dots^*}(r) for any i \ge 0
```

We know bound: $f(m,n,r) \le m + n \cdot \log r$

```
If f(m,n,r) \leq k \cdot m + n \cdot g(r) then also f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**\dots^*}(r) for any i \geq 0
```

We know bound: $f(m,n,r) \le m + n \cdot \log r$

```
Therefore for any i \ge 0: f(m,n,r) \le (i+1) \cdot m + n \cdot log^{**...*}(r)
```

For any $i \ge 0$: $f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

```
For any i \ge 0: f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)
```

```
For any i \ge 0: f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)
```

Define
$$\alpha(r) = \min\{i \mid log^{**...*}(r) \leq i\}$$

```
For any i \ge 0: f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)
```

Define
$$\alpha(r) = \min\{i \mid log^{**...*}(r) \leq i\}$$

$$f(m,n,r) \leq (m+n)(1+\alpha(r))$$

For any
$$i \ge 0$$
: $f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)$

Define
$$\alpha(r) = \min\{i \mid \log^{**...*}(r) \leq i\}$$

$$f(m,n,r) \leq (m+n)(1+\alpha(r))$$

$$\leq$$
 (m+n)(1+ α (log n))

```
For any i \ge 0: f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)
```

Define
$$\alpha(m,n,r) = \min\{i \mid log^{**}...*(r) \leq m/n\}$$

```
For any i \ge 0: f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)
```

Define
$$\alpha(m,n,r) = \min\{i \mid log^{**}...*(r) \leq m/n\}$$

$$f(m,n,r) \leq m(2+\alpha(m,n,r))$$

```
For any i \ge 0: f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)
```

Define
$$\alpha(m,n,r) = \min\{i \mid log^{**...*}(r) \leq m/n\}$$

$$f(m,n,r) \leq m(2+\alpha(m,n,r))$$

Define
$$\alpha(m,n) = \min\{i \mid log^{**}...*(log n) \leq m/n\}$$

```
For any i \ge 0: f(m,n,r) \le (i+1)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)
```

Define
$$\alpha(m,n,r) = \min\{i \mid log^{**...*}(r) \leq m/n\}$$

$$f(m,n,r) \leq m(2+\alpha(m,n,r))$$

$$i$$

$$Define \alpha(m,n) = \min\{i \mid log^{**...*}(log n) \leq m/n\}$$

$$f(m,n,r) \leq m(2+\alpha(m,n))$$