Algorithms and Data Structures
Winter Term 2015/16

Exercises for Unit 24

1. Consider the Jarnik-Prim algorithm for computing a minimum spanning tree. Convince yourself that it can be implemented with Fibonacci heaps to run in time $O(m+n \log n)$.

Now suppose there is a finite set C_{m} of m non-negative numbers, and the edge costs are given by a random permutation of the numbers in C_{m} on the edges in E. Show that under these conditions, the Jarnik-Prim algorithm can be implemented such that the expected number of decreaseKey operations is bounded by $O(n \log (m / n))$.
2. Suppose we want to maintain a minimum spanning tree of a graph under insertions and deletions of edges. For some undirected graph $G=(V, E)$ with edge costs, a minimum spanning tree T^{*} has been computed. Now a new edge e with $\operatorname{cost} c(e)$ is added to G. Show how to compute the minimum spanning tree of the new graph from T^{*}. How much time does it take? How would you proceed if an edge was removed from G ?
3. Let $G=(V, E)$ be a connected undirected graph with pairwise distinct edge costs. Design an algorithm that computes a spanning tree T of G whose maximal edge cost is as small as possible, i.e., that minimizes $\max _{e \in T} c(e)$. What running time can you achieve?

