

Problem 1

skipped

Problem 2

In class we always chose b to be a constant. Now we will vary b depending on n and show that this would improve the running time.

We show the statement using induction.

Base Case k = 2

The statement becomes $T(2^{\binom{2}{2}}) \leq C \cdot 2 \cdot 2^{\binom{3}{2}}$, which is obviously true if we pick $C \geq \frac{T(2)}{16}$

Induction Step

Assume the statement is true for all m < k, and we prove it for k. Let $n = 2^{\binom{k}{2}}$ and $b = 2^{k-1}$. Then we compute $\frac{n}{b}$ to be $2^{\binom{k}{2}-k+1} = 2^{\binom{k-1}{2}}$ Now we use the following equation we have proven in class:

$$T(n) \le \alpha \cdot b \cdot n + (2b-1)T(\frac{n}{b})$$

Plugging in the values we have chosen for n and b gives us:

$$T(2^{\binom{k}{2}}) \le \alpha \cdot 2^{k-1} \cdot 2^{\binom{k}{2}} + (2^k - 1)T(2^{\binom{k-1}{2}})$$

Here we use the induction hypothesis for $T(2^{\binom{k-1}{2}})$ and get:

$$T(2^{\binom{k}{2}}) \le \alpha \cdot 2^{k-1} \cdot 2^{\binom{k}{2}} + (2^{k} - 1)(C \cdot (k - 1) \cdot 2^{\binom{k}{2}}) =$$
$$= \alpha \cdot 2^{k-1} \cdot 2^{\binom{k}{2}} + C \cdot 2^{\binom{k}{2}} \cdot (2^{k} \cdot k - 2^{k} - k + 1)$$
$$= \alpha \cdot 2^{k-1} \cdot 2^{\binom{k}{2}} + C \cdot k \cdot 2^{\binom{k+1}{2}} + C \cdot 2^{\binom{k}{2}} \cdot (-2^{k} - k + 1)$$

In the last step we used that $2^{\binom{k}{2}} \cdot 2^k = 2^{\binom{k+1}{2}}$, the rest was just rearranging the terms. Therefore in order to prove the statement we need to establish the following:

$$\alpha \cdot 2^{k-1} \cdot 2^{\binom{k}{2}} \le C \cdot 2^{\binom{k}{2}} \cdot (2^k + k - 1)$$

We put this in the following form:

$$\frac{\alpha}{2} \cdot 2^{\binom{k}{2}+k} \le C \cdot 2^{\binom{k}{2}+k} + C \cdot (k-1)2^{\binom{k}{2}}$$

It is clear this equation holds for $C \geq \frac{\alpha}{2}$.

Therefore our statement is true for any $C \geq \max{\bigl(\frac{\alpha}{2}, \frac{T(2)}{16}\bigr)}$

Exercises for Unit 6

(3) multiplying two n digit integers
-we will assume that our base is 10 but all arguments
hold for any base b

$$a = \overline{a_{n-1}a_{n-2}...a_{n}a_{n}}, \quad b = \overline{b_{n-1}b_{n-2}...b_{n}b_{n}}$$

$$a(x) := a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_{n}x + a_{n}$$

$$b(x) := b_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + b_{n}x + b_{n}$$
- note that all a_{1}, b_{1} are one-digit-coeff. and $a = a(10)$,
 $b = b(10)$
- if we define $c(x) := a(x) \cdot b(x) = c_{2n-2}x^{2n-2} + ... + c_{n}x + c_{n}$
then the number we want to compute is equal to $c(10)$
- we can compute $c(x)$ in $O(n^{1+\varepsilon})$ time \rightarrow the only problem
is that the coeff. C: might not be one-digit numbers
 \Rightarrow we cannot just read aff what $c(10)$ is, because
 $c(10) \neq \overline{c_{2n-2}c_{2n-3}...c_{n}c_{n}}$
- how many digits can c i have? $C_{i} = \sum_{\substack{x \in a_{i} \\ x \neq 0 \\ in \ base \ b = 10}} c_{i} have need to compute one digit of $c = c(10)$
 $\Rightarrow O(log n)$ because at most $O(log n)$ cis can influence it and we
only need to add up that many one-digit numbers
- since c has $O(h)$ digits, we need in botal $O(n \log n)$ time to
compute $c = c(10)$ once we have $c(x) \rightarrow His$ is dominated by the
time we need for the polynomial multiplication
 $\Rightarrow T(n) = O(n^{1+\varepsilon})$$