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Exercises for Units 1 and 2

2. The following algorithm works on an array A[1..n] that contains n integer numbers. Analyze the algo-
rithm for its worst case behaviour and also analyze it for its expected behaviour under the probabilistic
assumption that array A[1..n] contains the integers from 1 to n as a random permutation with each
permutation equally likely. In particular consider the following questions for these analyses:

(a) How often is line 7 executed?

(b) What is the overall running time?

1: for i = 2 to n do
2: if A[i] < A[1] then
3: x = A[i]
4: for j = i downto 2 do
5: A[j] = A[j − 1]
6: end for
7: A[1] = x
8: end if
9: end for

The program maintains the following invariant:

• Whenever line 1 is executed the current A[1..i−1] is a permutation of the initial A[1..i−1]
that has the minimum element in A[1]

This means that the yes-branch of the if statement starting in line 2 is executed if A[i] is the
smallest of the elements A[1..i] (and this branch shifts the contents of A[1..i] in a circular way
so that the smallest element, i.e. A[i], which is x, is stored in A[1] – this is exactly line 7).

(a) In the worst case, when A[1..n] is sorted in decreasing order, line 7 is executed for every
i, which means n− 1 times.

For the expected case, let Mi be a 0-1 random variable, indicating whether line 7 is
executed in the loop interation for i. We know that Mi = 1 iff A[i] is the smallest
among the elements in A[1..i]. By the random permutation assumption this happens
with probability 1/i, and hence the expected value of Mi is 1/i. Therefore the expected
number of times that line 7 is executed is∑

1<i≤n

Ex[Mi] =
∑

1<i≤n

1/i = Hn−1 ≈ lnn .

(b) Since the circular shift takes O(i) time, in the worst case you can incur
∑

1<i≤nO(i) =

O(n2) time.

For the expected case note that the work to be done during the iteration i of the loop, is
either O(i) if a new minimum was found, or O(1) otherwise. Let Di denote the expected
work of iteration i. We have

Di = Pr(Mi = 1) ·O(i) + Pr(Mi = 0) ·O(1) = (1/i) ·O(i) + (1 − 1/i) ·O(1) = O(1) .

Thus the expected work over all iterations is
∑

1<i≤nO(1) = O(n).
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3. In the programming languages C and C++ an expression of the form (a < b) returns the value 1 if a
is indeed less than b and evaluates to 0 otherwise. Expressions involving other comparison operators,
such as (a >= b) have analogous semantics.

Consider the following somewhat unusual way of rearranging the values in integer array A[1..n] so that
the small entries with value less than “pivot” x end up in part A[1..j] whereas the large entries with
value ≥ x end up in A[j + 1..n].

1: i = 1; j = n
2: repeat
3: swap(A[i], A[j])
4: s = (A[i] < x); t = (A[j] >= x)
5: i = i + s; j = j − t
6: until j < i

Consider the number of swaps in line 3.

(a) Does this algorithm indeed partition the array as advertised?

(b) How many swaps can there be in the worst case and under what circumstances does this worst
case happen?

(c) Assume that every entry of A[] has (independently of the others) equal probability of being
smaller than pivot x and of being not smaller than x. What is the expected number of swaps
performed by the algorithm?

(d) You are invited to compare implementations of this strange partition procedure and of the tra-
ditional one as discussed in classe (or as given for instance in the Quicksort section of Cormen
et al.). On my laptop this strange partition procedure is faster than the traditional procedure,
inspite of the superfluous swaps. Why would this be the case?

Let us call a number small iff it is less than x and large otherwise.

(a) The algorithm maintains the following invariant:

• whenever the repeat loop is started all numbers in A[1..i − 1] are small and all
numbers in A[j + 1..n] are large.

Since the program does never decreases i nor increases j, if the program terminates the
invariant implies that it delivers the desired result.

(b) Let us count the number of times an element is moved. Since only swaps move elements
(and one swap moves two elements) the total number of swaps will be half the total
number of moves.

A[i] will me moved in line 3. If it is large, j will be decreased and it will not be moved
again, otherwise it will be moved again and i will be increased. Symmetric statements
can be made for A[j]. This means an element of A[] can be moved at most twice. This
happens to all elements if the first n/2 ones of A[] are all small, and the other ones are
all large. The total number of moves in this case is 2n and the total number of swaps
is n.

(c) Again counting moves we see that an element is moved once with probability 1/2 and
moved twice with probability 1/2. This means its expected nubmer of moves is 3/2
Summing over all elements we get 3n/2 expected moves and hence 3n/4 expected swaps.

(d) Such an implementation turns out to be advantageous on processors that do branch
prediction and speculative execution, since this implementation avoids branches.
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