
Algorithms and Data Structures
Spring 2018

Exercises for Units 12 and 13

1. In class we discussed dynamic arrays that allow constant time access of the i-th elements
and whose length can be increased by one in constant amortized time, while using linear
space. Develop a method that makes such arrays fully dynamic in that the length can also
be decreased by one in constant amortized time (making the element in the formerly last
position lost for good).

So overall your method should allow constant worst case time access and constant amortized
length increase and decrease by one, while the space that is used is always proportional to
the current lengthe of the array.

It may be easiest to use the bank account method for the amortized analysis, but you are free
to use any correct approach for your analysis.

2. If you feel uneasy with splay trees, draw a few examples and test insertions and deletions.

You can also search the web for splay tree animations and experiment with them.

3. Let n elements e1, e2, . . . , en be stored in the nodes of a splay tree. Consider a sequence S
of m accesses where element ei is accessed in total mi ≥ 1 times (1 ≤ i ≤ n). The cost of
accessing an element is proportional to 1 plus the depth of the element in the current tree.
All accesses will be performed using the splay method.

Prove that the total time for performing S is

O

m +
∑

1≤i≤n

(
mi · log

(
m

mi

)) .

1



Algorithms and Data Structures
Spring 2018

Exercises for Units 12 and 13

4. If you feel uneasy with treaps, draw a few examples and test insertions and deletions.

You can also search the web for treap/randomized search tree animations and experiment
with them.

5. Let T be some binary search tree with root r. For node v in T define its left ancestor to be
the first node on the path from v to r whose key is smaller than the key of v. Analogously the
right ancestor is defined to be the first node on this path with larger key. Such a left ancestor
or right ancestor need not exist. (Can you characterize those nodes?)

Let us call an implementation of a binary search tree lush if it stores with every node four
pointers: left child, right child, left ancestor, and right ancestor.

(a) Can rotations be realized in constant time in a lush implementation?

(b) Consider treaps with lush implementations. Give implementations of Split and Con-
catenate that do not rely on rotations.

6. A max-insertion into a treap T inserts a new key that is larger than all keys currently in T .

(a) Give a simple implementation of max-insertions that relies on maintaining a pointer
(“finger”) to the maximum key node and parent pointers.

(b) Can you express the cost of the max-insertion in terms of the structure of the resulting
treap?

(c) Show that the expected cost of a max-insertion into a randomized search tree is constant.

(d) Show that the amortized cost of a max-insertion into a general treap is constant (no
matter which priorities are used).

In other words, assume a sequence of n items is inserted into an intially empty treap in
increasing key order using max-insertions. Show that the total cost of these n insertions
is O(n).

(e) By symmetry whatever you proved for max-insertions also holds for the corresponding
min-insertions.

Is the statement of (d) still true for a sequence of arbitrarily interlaced max-insertions
and min-insertion?

7. Let x1 < x2 < · · · < xn be a sequence of n keys. In a randomized search tree storing this
sequence what is the expected size of the subtree whose root stores xk ?

2


