Algorithms and Data Structures
Spring 2018
Exercises for Units 15 and 16

1. Let U ={0,1,..., K — 1}, let p > K be a prime number, and let 0 < ¢t < K. For 0 < a,b < p
define
hap(x) = ((a- 2+ b) mod p) mod .
Show that the family H = {hqp | 0 < a < p,0 < b < p} is a universal set of hash functions
from U to T ={0,...,t — 1}.

2. Let H be a set of functions from U to T' = {0,...,t — 1}. We call H pairwise independent if
for all distinct and y in U and all 4,j € T we have
Pr (h(z) =i and h(y) = j) < 1/t2.

(a) Show that if # is pairwise independent, then it is also universal.

(b) What about the converse? Does universality of H also necessarily imply pairwise inde-
pendence of H?

(c) Is the family H of question 1 also pairwise independent?

3. Consider the following two functions h; and hy defined in the following table:

For each of the sets S; given below determine the number of ways in which S; could be stored
in the process of cuckoo hashing using a tables of size 8, and using the two hash functions hy
and ho. Justify your answers.

S1 ={a,c,e} S ={a,b,c,d} Ss={a,bc,dye f} Si={a,becde,f g}

4. In class we discussed straightforward hollow heaps which allow to implement meldable priority
queues with decrease-key needing just constant worst case time for all operations except
for the operations Delete and MinDelete which need logarithmic amortized time. There is a
disadvantage, however, in that the space usage is not linear in n, the number of items in the
structure, but linear in M, the number of operations performed.

Give a simple method that reduces the space usage, so that at all times the space used is
proportional to the number of items in the structure, while all the time bounds mentioned
above are maintained.

5. Is it conceivable that hollow heaps also allow an operations IncreaseKey that uses constant
amortized time, while keeping the running times guarantees of all the other operations?

If yes, how would you do it, if no, why is it impossible?

6. Hollow heaps need two node-pointers per node, namely one to its next sibbling and another
one to the list of its children. Since every node stores at most one item, this means you always
need space for at least 2n node-pointers, where n is the number of items in the heap.

Can you develop a way of reducing the number of necessary node-pointers by keeping more
than one item in every node, e.g. between k and 2k items for every “full” node?

What invariants would you maintain? How would linking work? How would you implement
all other operations? What running times could you achieve? And what would be the node-
pointer space requirement?

