

Problem 1

Problem 2

李 · · · · · · · · · · · · · · · · · · ·
Adding the above two expressions
Property of the Angelines of the Teat and Angelines
$cost(c) \leq \left((m_1 + m_b) + (k-1)(n_1 + n_b) \right) \cdot \left[log_{k} n \right]$
$-\dot{m}^{\dagger}-(k-1)u^{\dagger}+u^{\dagger}+\dot{u}^{\dagger}$
during of it smaller.
< ((
$\leq (m + (k+)n) \lceil \log_{k} n \rceil + n_b - (k+)n_+$
Observe that nb < (k-1) n+ and the claim follows.
We still need to prove the base case i.e when n < k
of the death compression recovered the
-> By using the claimed bound, to a mother to a
$cost(c) \leq (m+k^2) - \lceil log_k n \rceil^{m-1} \leq m+k^2$
Horaris and politically by Thomas of some 11310
We will argue that this is trivially true.
Using similar arguments as in exercise 1,
we can argue that for any arbitrary sequence of union () and find (), the cost of these operations
is bounded as O(n+m)
$(m_1 e) \cdot (m_2 e) + (m_3 e) = (a) \cdot (a)$
: For base case, the bound holds trivially.
[- [7, [7] =], [9] - (47. (1-N) + m) - (43) +

Problem 3

Exercises for Units 18 & 19 (3.) I forest, x node in F; +(x) = height of subtree rooted at x F is a rank forest iff Y node x, Y i s.t. Osi < r(x) there is a dild y; of x with r(yi)=i. Dissection of a forest F with node set X: partition of X into Xt and Xs s.t. $x \in X_t \Rightarrow every accestor af$ x is also in X+ a) (Xss, Xrs) is a dissection - this is obviously a partition, we just have to check whether one of the sets is also upwards closed Xt := X75 Xb := X55 all nodes whose rank is > s => if x & X>s, then the subtree rooted at x has height >s -but any any ancestor of x can only have a higher subtree => X, is upwards closed b) F(X ss) is a rank forest with max. rank ss - this is obvious - max. rank is as by definition and it is a rank forest because F was a rank forest c) F(X>s) is a rank forest with max. rank & r-s-1 only look at nodes whose rank in the original forest was 2 s+1 - nodes with rank s+1 in the original forest are now leaves -all nodes in here lost children of rank so in the original forest - nodes who had max. rank = + before now have children of rank 0,1,2,..., F-5-2 => max rank is now t-5-1

5+(1-5-1)

d)
$$|X_{75}| \leq |X|/2^{5+1}$$

- every node $x \in X_{75}$ has at least one child of rank $0, 1, ..., 5$ and all these nodes and all their children are in X_{55}
 $x \in X_{75}$
 $|X_{1}| + 2 + 2^{2} + ... + 2^{5} = 2^{5+1} - 1$ nodes in X_{55}
 $|X_{1}| + 2 + 2^{2} + ... + 2^{5} = 2^{5+1} - 1$ nodes in X_{55}
 $|X_{1}| + |X_{1}| + |$

Algorithms and Data Structures Spring 2018

Problem 4

Point a) extract = [4, 3, 2, 6, 8, 1]

Point b)

Let us first give a brief explanation of the algorithm. The main idea is that, instead of finding the number that is extracted each time there is such an operation, the algorithm finds, for each number, the operation that extracts it, if the number is ever extracted. The extract_min operation gets the smallest value that is already available. One other way to look at this is that the smallest number is extracted by the next extract_min operation, and, in general, each number is extracted by the next extract_min operation that does not extract a smaller number.

With this in mind, we will prove that the algorithm is correct by contradiction. We assume that there is some number that is not extracted correctly. Let $x = \mathsf{extract}[j]$ be such a number, with minimal j, and let y be the number that should be in $\mathsf{extract}[j]$.

Now, there are two possible cases: either x < y or x > y. Let us start with x < y. We claim that, if x is in K_j when it is inserted into $\mathsf{extract}[j]$, then, when the algorithm started, it must be that $x \in K_\ell$, for some $\ell \le j$. This must be true, since the only operation that changes the sets K_j is on line 7, and it simply moves elements from a set K_j to a set K_ℓ , for some $\ell > j$. Therefore, if $x \in K_\ell$, $\ell > j$ originally, then it wouldn't be possible for it to be in K_j , at any point in the algorithm.

We conclude that, j-th extract_min could have extracted x instead of y, since the operation may extract any element that is already available (that is, from any K_{ℓ} , $\ell \leq j$), that hasn't been extracted up to that point. Since extract is correct until position j-1, by assumption, x was not extracted by any previous operation, and therefore it cannot happen that x < y.

Now, we prove that x > y cannot happen as well, and therefore, reach a contradiction. It is clear from the algorithm that if a set is in some K_j when the algorithm starts, then it is always in some K_ℓ , that is, it is never removed from all the sets. If y was the correct value for $\mathsf{extract}[j]$, then it must be that $y \in K_\ell$, for some $\ell \neq j$. Since $\mathsf{extract}$ is correct up to j-1, then it must be the case that $\ell > j$. Furthermore, since y can be extracted (and should) by the j-th operation, the it must have started at some set K_m , for some $m \leq j$. Therefore, since $\ell > j$, by some sequence of operations on line 7, y was moved from K_m to K_ℓ . This can only happen if K_j was removed, or y would be moved into K_j instead. But K_j cannot be removed, since K_j is removed only when i = x, which happens after i = y. We conclude that this case cannot happen, and, since there is no other possible case, we reach a contradiction on our assumption.

Algorithms and Data Structures Spring 2018

Exercises for Units 17 and 18, Solutions

Point c)

We create n sets, one for each number, and then, using at most n-m union operations, get m sets, one for each K_j . We also store, for each set (in the representative element), the index j, the representative elements of the next set (initially K_{j+1}) and the previous set (initially K_{j-1}). When computing the union of sets K_j , K_ℓ , and if we store them as K_ℓ (for $j < \ell$, as is the case in the algorithm), we simply keep the index and next element of K_ℓ , set the previous element to the previous of K_j , and set the next element of the previous element of K_j to be K_ℓ . To find the value of ℓ , on line 6, we use the index of the next representative element, which can be obtained in constant time.

Now, during the course of the algorithm, we run n make_set operations, at most n union operations (at most n-m to obtain sets for each K_j , and then m more, one for each number that is extracted), and n find_set operations. All these operations take $O(n\alpha(n))$ time.