
Algorithms and Data Structures
Spring 2018

Exercises for Units 19 and 20

1. An easy exercise: Execute Sharir’s double DFS algorithm to find the strongly connected
components in the following graph (which for convenience is given twice).

2. In general graphs it is very difficult to find the longest simple path between two given nodes s
and t, i.e. the simple path with the most edges. If one could find such path easily it would be
possible to efficiently solve the Hamiltonian Path Problem, which is known to be NP-complete.

Show that in a directed acyclic graph the longest directed path between two nodes can be
found in linear time, i.e. time O(m + n).

1

Algorithms and Data Structures
Spring 2018

Exercises for Units 19 and 20

3. Let G = (V,E) be a connected undirected graph. An articulation point of G is a vertex
whose removal disconnects G. Similarly, a bridge is an edge whose removal disconnects G. A
biconnected component of G is a maximal set of edges such that any two edges in the set lie
on a common simple cycle.

() Draw an appropriate example graph and illustrate to yourself these three concepts.

Let Gπ = (V,Eπ) be a DFS tree of G.

(a) Give a test for telling whether the root of Gπ is an articulation point.

(b) Let v be a non-root vertex of Gπ. Prove v is an articulation point iff there is no back
edge (u,w) such that in Gπ the vertex u is a descendant of v and w is a proper ancestor
of v.

(c) Let low[v] be the minimum of d[v] and min{d[w] : (u,w) is a back edge for some descendant u of v}.

Show how to compute low[v] for all vertices v ∈ V in O(|E|) time.

(d) Show how to compute all articulation points in O(|E|) time.

(e) Prove that an edge of G is a bridge iff it does not lie on any simple cycle of G.

(f) Show how to compute all bridges of G in O(|E|) time.

(g) Prove that the biconnected components partition the non-bridge edges of G.

(h) Give a linear time algorithm to label each edge e of G with a positive integer bcc[e] such
that bcc[e] =bcc[e′] iff e and e′ are in the same biconnected component.

4. Assume all edge lengths in a graph are integers in the range 1 through K. Show that the
single source shortest path problem for such a graph can be solved in time O(m + n logK).
(Of course n is the number of nodes in the graph, and m is the number of edges.)

Hint: Can you arrange things so that the priority queue used in Dijkstra’s algorithm contains
at all times only O(K) distinct keys?

5. Let G be a directed graph, where each edge is colored either red or blue. Let u and v be two
vertices of G.

(a) Design an efficient method for deciding whether there exists a directed path from u to v
that contains more red edges than blue edges.

(b) Design an efficient method for finding a path from u to v that contains as few red edges
as possible.

2

