
Algorithms and Data Structures
Spring 2018

Solutions for Exercises for Units 19 and 20, Solutions

Problem 2

Clearly in a DAG the simple path with the most edges must be between some source and some sink. For
vertex v let d(v) be the the maximal number of edges on a path from some source to v. For a source vertex
s we have d(s) = 0. Since there are no cycles in a DAG for every vertex v we have

d(v) = 1 + max{u ∈ In(v) | d(u)} (∗)

Compute all the d(v)’s by first initializing d(v) = 0 for each vertex v and then going through all the vertices
in topological order and applying formula (*).
This takes time proportional to 1 plus the sum of the indegrees, which is O(n+m), with n being the number
of vertices, and m the number of edges.

Problem 3

(Solution by A. Lohr.)
a. The test is whether the root has more than one child, in which case it is an articulation point.

1



Algorithms and Data Structures
Spring 2018

Solutions for Exercises for Units 19 and 20, Solutions

2



Algorithms and Data Structures
Spring 2018

Solutions for Exercises for Units 19 and 20, Solutions

Problem 4

Note that if all edge weights are integers in the range 1 through K, then in Dikjstra’s algorithm at any pont
in time the set of keys in the priority queue is at most of size K + 2, with all the at most K + 1 finite integer
keys lying between the current minimum x and x + K. When the algorithm starts there are only the key
values 0 and ∞ and later iterations of the main loop of Dijkstra’s algorithm can only create keys between x
and x + K.
So the problem is to design a priority queue that can handle a set S of n elements with at most K distinct
keys (the K here is the K + 2 of the previous paragraph), so that all operations take O(1) amortized time
except for MinDelete and Delete, which are to take O(logK) time. Let us call this priority queuq element
queue, EQ.
This element queue will make use of a priority queue PQ, with O(1) time for all operations except for
DeleteMin which takes logarithmic time (for the purposes of this question amortized bounds suffice, which
subsumes worst case bound). Hollow heaps are a possible implementation for PQ.
PQ will store items which refer to non-empty sets of elements, i.e. for each item I in the PQ there is a
non-empty set U [I] of elements all having the same key key[I]. Every element of S occurs in exactly one
U [I].
We will require that an element x can test, whether its containing U [I] contains other elements. If x is the
only element, then it can determine the item I in constant time, otherwise it can be removed from U [I] in
constant time. We will also need that the union of two such (disjoint) sets U [I] and U [I ′] can be formed in
constant time. This all can be achieved for instance by implementing U [I] as a circular doubly linked list
with a sentinel node.
Every x must of course know its key. We assume that sets of O(K) keys can be stored in a dictionary W
with constant insertion and lookup time. This can either be achieved with hashing, or in the application at
hand by an array, that stores key k at position k mod K. We will also require that W can be enumerated in
O(K) time.
Now let us go through the operation for EQ.
To insert an element z into EQ, create a new item I with U [I] = {z} and key[I] = z.key, and insert this
item into PQ. This takes constant time, plus the insertion time into PQ, which is constant also.
To execute FindMin for EQ, do a FindMin on PQ which yields some item I, and then return one element
of U [I]. This also takes constant time.
To do a DecreasKey(z,newkey) for EQ, first test whether the U [I] that contains element z is a singleton.
If yes, perform a DecreaseKey(I, newkey) operation on PQ. Otherwise remove z from U [I], create a new
item I ′ with U [I ′] = {z} and key[I ′] = z.newkey, and insert this item into PQ. This takes constant time.
To perform a DeleteMin on EQ, take the element z returned by FindMin on EQ, and first test whether
the U [I] that contains element z is a singleton. If yes, perform a Delete(U) oepration on PQ. Otherwise
simply remove z from U [I]. This takes constant time plus possibly the time to do a delete in PQ, which is
logarithmic in L the number of items stored in PQ.
So it remains to make sure that L = O(K). This is achieved as follows: Whenever PQ contains at least
2K items it is reconstructed. Using dictionary W a new set of items can be created so for every key there
is exactly one new item that has associated with it all elements with that key. These new items are then
inserted in a new PQ. This takes O(K) time, which is constant in the amortized sense, since for such a
reconstruction to happen, at least K insertions or decreasekey operations must have happend since the last
reconstruction.

Problem 5

(a) Give the red edges a weight of −1 and the blue edges a weight of +1. Then the shortest path from u to v
has negative weight iff there is a path with more red edges. This can be done by applying the Bellman-Ford
algorithm and takes O(mn) time.
(b) Give the red edges weight 1 and the blue edges weight 0, and apply Dijkstra’s algorithm, which needs
O(m + n log n) time.

3


