Algorithms and Data Structures
 Spring 2018

Exercises for Unit 26

1. Let $G=(A, B ; E)$ be a bipartite graph with $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of equal size n. The Edmonds matrix T for this graph is defined as an $n \times n$ matrix with $T_{i j}=0$ if there is no edge between a_{i} and b_{j} and otherwise $T_{i j}=x_{i j}$ where $x_{i j}$ is a variable.
Prove that $\operatorname{det} T \neq 0$ iff G has a perfect matching (i.e. a matching of size n).
2. Three points a, b, c in the plane lie on a common line iff

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & a_{1} & a_{2} \\
1 & b_{1} & b_{2} \\
1 & c_{1} & c_{2}
\end{array}\right)=0
$$

How large an integer N would you choose so that selecting n points uniformly at random from the integer grid $\{1, \ldots, N\} \times\{1, \ldots, N\}$ produces with probability at least α a set S that has no 3 points on a common line?

Extra question unrelated to today's material: If you are allowed to choose S from such a grid deterministically how "small" an N would you need?

