
Algorithms and Data Structures
Spring 2018

Exercises for Units 31

1. Construct some set of n segments along with some insertion(deletion) order for the incremental
construction of a search structure so that for some query point the query time is Ω(n).

2. In the lecture we discussed a randomized method for building a point location query structure
for a trapezoidation so that for any point in the plane the expected query time in O(log n).
As a matter of fact we proved a more precise bound saying that for any query point q in
expectation at most 5Hn ≈ 5 lnn basic comparisons are necessary to locate q.

This problem is about achieving a query time guarantee of this sort for the worst case and
not just in expectation.

We make the following non-degeneracy assumptions: no two segements of S intersect at all
(not even at endpoints); no two segment endpoints have the same y-coordinate.

One approach of achieving good worst case query time proceeds as follows: Instead of removing
just one segment s from S and building trapezuidation T (S) and query structure Q(S) from
T (S \{s}) and Q(S \{s}) you could remove an entire subset A ⊂ S and construct the desired
structure from T (S \ A) and Q(S \ A). If the segments in A are sufficiently independent,
i.e. no two touch the same trapezoid of T (S), then after locating a query point q in T (S \A)
it would take just constantly many more basic comparison to locate it in T (S) (at most one
X-comparison and at most two Y -comparisons).

(a) Convince yourself of this fact.

Of course you would like to make A large, if possible a fixed fraction of S. This turns out to be
possible: Let’s make our lifes simpler and when removing the segments of A from T (S) we will
actually leave the endpoints of those segments along with their horizontal extensions as part
of the trapezoidation of T (S \ A). This means the independence condition on the segments
of A is now that no two segments must bound the same trapezoid of T (S). Moreover, just at
most one X-comparison is needed to locate a query point q in T (S) after knowing its location
in T (S \A).

(b) Prove that for any set S of n segments there must be a subset A of at least n/4 inde-
pendent segements, i.e. no two segments of A bound the same trapezoid of T (S).

Hint: Create a graph whose nodeset is S and that for each trapezoid τ in T (S) has an
edge that joins the two segments that bound the trapezoid (and remove duplicate edges).
Argue that this graph is planar and hence has an independent set of the desired size.

This independent segment subset removal step could be recursively repated log4/3 n times to
remove all segments and be left with the trapezoids formed by the 2n extensions of segment
endpoints. Since those extensions are ordered, 1 + log2 n comparisons would suffice to locate
a query point in those trapezoids. This would lead to a total worst cae query time of 1 +
log2 n + log4/3 n ≈ 1 + 4.92 lnn for locating any query point in T (S), actually counting the
worst case number of basic comparisons. However, there is a drawback:

(c) Show that if the above approach is taken the space required for the query structure Q(S)
can be Θ(n log n).

Hint: How many trapezoids does the trapezoidation at level i in this hierarchy contain?
How many decision nodes may have to be employed Q() in order to go between two levels
of the query structure.

1



Algorithms and Data Structures
Spring 2018

Exercises for Units 31

A way around this space problem is to periodically just remove independent extensions (lea-
ding to Y -nodes in Q() ).

(d) Prove that always at least half of the extensions can be simultaneously removed without
affecting any trapezoid with more than one extension.

Hint: What does the constraint graph for extensions that should not be removed simulta-
neously look like?

This leads to the following recursive approach (*):

Perform two levels of independent segment removals (one quarter each) followed by one level
of extension removal (one half), and repeat recursively.

Note that the segment removals reduce the number of segments but increase the number of
extensions, whereas the extension removals just decrease the number of extensions.

(e) Show that at each level of the recursion the number of extensions is at most 7 times the
number of segments.

(f) Prove that if approach (*) is used the total space used for the query strusture is O(n).

(g) What worst case query time does approach (*) guarantee? Try to be specific about the
constants.

2


