Hybrid Bellman-Ford-Dijkstra Algorithm

Yefim Dinitz and Rotem Itzhak
Department of Computer Science

Ben-Gurion University of the Negev
POB 653, Beer-Sheva 84105, Israel
E-mail: {dinitz,rotemitz}@cs.bgu.ac.il

Technical Report CS-10-04

June 6, 2010

Abstract

Consider the single-source cheapest paths problem in a digraph
with negative edge costs allowed. A hybrid of Bellman-Ford and
Dijkstra algorithms is suggested, improving the running time bound
upon Bellman-Ford for graphs with a sparse distribution of negative
cost edges. The algorithm iterates Dijkstra several times without re-
initializing values d(v) at vertices. At most k+2 executions of Dijkstra
solve the problem, if for any vertex reachable from the source, there
exists a cheapest path to it with at most k negative cost edges.

In addition, a new, straightforward proof is suggested that the
Bellman-Ford algorithm results in a cheapest path tree from the source.

1 Introduction

Several basic graph algorithms are widely known from the 50th-60th of the
past century. Among them are single-source cheapest path algorithms and
the PERT algorithm for finding the early project schedule in a DAG (directed
acyclic graph) via finding the longest paths in it (see, e.g., [3, Chapter 25.4]).
Though the basic graph algorithms have being massively taught at all CS
departments all over the world since then, it turns out that new aspects can
be revealed. We present two such results on cheapest paths algorithms: a
new algorithm and a new proof.

In what follows, we say “graph” meaning a digraph with edge costs. The
input graph is denoted by G = (V, E,¢). An edge or cycle of a negative
cost are called “negative”. When relating to classic results, we usually do
not provide references; the reader can refer to any textbook in algorithms,
e.g., [3]. The main goal of this paper is worst case running time bounds, for
algorithms.

A special kind of innovations is hybrid algorithms: a combination of
known algorithms for solving either a new problem or an old problem with
a new time bound. For example, the algorithm of [7, 6] combines PERT
and Dijkstra algorithms for finding the early schedule in a general graph
with precedence relations of AND or OR type at nodes (PERT and the
single-source cheapest paths problems are boundary cases of this problem).
Surprisingly, though these algorithms seem quite different, the hybrid algo-
rithm combining them is natural, and its running time is the sum of running
times of PERT and Dijkstra.!

This paper presents a new, hybrid algorithm for finding cheapest paths
from a source s in a graph G with general edge costs. It combines Bellman-
Ford and Dijkstra algorithms, and will be called Bellman-Ford-Dijkstra (BFD).
Recall that both former algorithms pass over the graph edges, executing the
update (called also “ relabeling” or “relaxation”) of the tentative function
d on vertices. Dijkstra works for the non-negative edge costs case. It is a
search type algorithm: it makes just a single pass on all vertices and edges
reachable from s, in a greedy order, while never recomputing the d values at
scanned vertices.

For graphs with negative edges, the Bellman-Ford algorithm is used. In

LA similar algorithm for some grammar problem was suggested in [10], without paying
attention to its hybrid nature.

contrast, it works in rounds, each consisting of a simple loop of relaxations
on the graph edges, in an arbitrary order. The known bound on the number
of its rounds is r + 1, where r is the minimal integer such that for any vertex
reachable from s, there exists a cheapest path from s to it containing at most
r edges. If the input graph contains a negative cycle reachable from s, the
cheapest paths do not exist, and Bellman-Ford detects that in |V| rounds.
Otherwise, r as above is at most |V| — 1. Since each round costs O(|E|), the
implied running time bound is O(|V||E|).*> Notice that this is by an order of
magnitude more than the Dijkstra bound O(|E| + |V |log [V]).

Our goal is to decrease the (worst case) round number bound of Bellman-
Ford. We achieve it by using a smart loop of relaxations at each round.
The idea of BFD is to iterate Dijkstra at Bellman-Ford rounds, without re-
initializing values of d at vertices. We show that this works, despite the com-
mon knowledge announced everywhere: “Dijkstra’s algorithm cannot handle
graphs with negative edge costs”. Our bound for the number of BFD rounds
is k + 2, where k s the minimal integer such that for any vertex reach-
able from s, there exists a cheapest path from s to it containing at most k
negative edges. This is an essential improvement over the Bellman-Ford
bound for graphs with a sparse dispersion of negative edges. (It should be
mentioned that the running time of a BFD round increases from O(|E|) to
O(|E| + |V|log |V]), which is slightly worse for sparse graphs.)

That is, BFD is faster than Bellman-Ford for in-between cases, when there
are either just a few negative edges in the graph, or many such edges but
sparsely dispersed in the graph. A motivation of such cases comes naturally
from classic, seemingly purely non-negative problem settings. For example,
consider a GPS problem of finding a shortest route in a road map. Suppose
that a driver chooses a few objects of interest, such as a beautiful view or a
good restaurant, and assigns to each of them a route cost reduction. Then,
the road map can acquire several negative edges.

It should be mentioned that there is a wide study on practical cheapest
paths algorithms, whose running time for known benchmarks is drastically
lower than that defined by known worst case bounds. For example, see [1, 2]
and references therein. In particular, in [2, Section 5.3] a variant of the
Bellman-Ford algorithm is mentioned, where at each round the edges are
passed in the order of the values of function d at their initial vertices, which

2With the additional assumption that edge lengths are integers bounded below by
—N < =2, Goldberg [8] suggests an algorithm with the O(log N+/|V||E|) bound.

is the same order as that of BFD. However, this variant was rejected there
from consideration, for practical running time reasons.

The correctness proof of BFD is a generalization of a usual such proof
for Bellman-Ford. Hence, BFD may become an instructive supplement for a
university course in algorithms.

In addition, we suggest a new proof of a classic property of the Bellman-
Ford algorithm. Proofs that Bellman-Ford computes a cheapest paths tree
from s remained not simple for decades. For example, in both editions of a
popular textbook [3], it is about three pages long. Other, much shorter proofs
appear in [12, 9]. However, they are indirect: the key lemma proves that back-
pointers 7 never form a cycle, and it implies the statement. In contrast, the
proof of a similar statement for the Dijkstra algorithm is straightforward: By
the algorithm, beginning from the initial tree consisting of root s only, each
iteration adds a new leaf edge to the back-pointer graph; clearly, its property
of being a tree rooted at s is maintained. We present a similar proof for
Bellman-Ford.

2 Hybrid Bellman-Ford-Dijkstra Algorithm

2.1 Algorithm

Recall the basic Bellman-Ford (BF) and Dijkstra algorithms.

Initialize
d(v) «— oo, for all v e V
7w(v) « nil, for allv € V
d(s) <0

Relax(u,v)
if d(v) > d(u) + ¢(u,v)
d(v) «— d(u) + c(u,v)

(V) —u

Plain_scan
for each edge (u,v) € £
Relax(u,v)

Dijkstra_scan
S—10
while (there is a vertex in V' \ S with d < o0) do
find vertex w in V' \ S with the minimal value of d
S — SuU{u}
for each edge (u,v) € E /* scanning of u */
Relax(u,v)

Dijkstra(G, s)
Initialize
Dijkstra_scan
return(d, 7)

Bellman-Ford(G, s)
Initialize
11
do
Plain_scan
1++
until ((there was no change of d at Plain_scan) or (i = |V|))
if (i < |V|) return(d, 7)
else return(” There exists a negative cycle reachable from s.”)

Algorithm Bellman-Ford-Dijkstra (BFD) is as follows:

Bellman-Ford-Dijkstra(G, s)
Initialize
11
do
Dijkstra_scan
1++
until ((there was no change of d at Dijkstra_scan) or (i = |V| —1))
if (i < |V|—1) return(d,)
else return(” There exists a negative cycle reachable from s.”)

Notice that BFD may be considered a particular version of BF, since at
each round, Relaz is executed on all edges reachable from s.

Although this paper concentrates on worst case time bounds, we con-
sider also the basic practical variants of BF and of BFD, for complete-
ness. We denote them by BF-p and BFD-p, respectively. They group
Relax(u,v) executions to bunches with the same vertex u, called “scanning
u” (in Dijkstra_scan this comes automatically). At each round, for each
vertex u the value of d(u) at the time of scanning u at that round is stored.
At the next round, vertices u are scanned only if their current d values are
strictly less than their d values stored at the previous round (since otherwise,
their scanning is useless). Though the worst case bound of BF-p remains the
same as that of BF, it is known that in practice, this modification decreases
the running time significantly. Various choices of the vertex scanning order
in BF are used; see, e.g., [2] for their comparison.

2.2 Analysis

Recall known properties of Relaz-based algorithms. We denote by opt(v) the
cost of a cheapest path from s to v in G. We set opt(v) = oo if v is not
reachable from s.

Fact 2.1 Consider an arbitrary (properly initialized) sequence of Relax exe-
cutions.

1. At any moment and for any vertex v, holds d(v) > opt(v).

2. Values of d may only decrease. Therefore after d(v) reaches opt(v),
neither d(v) nor mw(v) do not change.

3. If there is a negative cycle reachable from s, then at any moment there
exists an edge (u,v) with d(u) + c¢(u,v) < d(v).

For a path P, let us define neg(P) be the number of negative edges in P,
not including its first and last edges, if negative. For a vertex v reachable from
s, we define neg(v) be the minimal value of neg(P) over all cheapest paths
from s to v. We call the path providing that minimum neg-optimal for v. We
formally set neg(s) = —1, and neg(v) = oo if v is not reachable from s. We
define neg(G, s) to be the maximal finite value of neg(v). It is known that if
there exists a cheapest path from s to v, then there exists a simple such path.
Therefore, neither neg(v) nor neg(G, s) can exceed (|V|—1)+2 = |V| — 3.

p

Figure 1: Path P and its sub-path P. Negative edges are shown as thick lines.
The last edge could be not negative. The part of P before P could be empty
(s = vg), and then (vg,v1) could be negative.

Proposition 2.2 If there exists a cheapest path from s to v, after neg(v)+1
BFD rounds, holds d(v) = opt(v). This holds for BFD-p as well.

Proof: We prove for BED by induction on neg(v). Clearly, the statement is
correct for the basis case neg(v) = —1 (that is, for v = s).

We now assume that the statement is correct for all v’, neg(v') < k, k > 0,
and will prove it for v, neg(v) = k. Let P be a neg-optimal path to v. Let e
be the last negative edge along P, which is neither its first nor its last edge,
if it exists (that is, if & > 1). We denote by P the final part of P after e,
if it exists, and set P = P otherwise. Let P = (vo, vy, ..., vy, v) and denote
V = {vg,v1,. .. , Vg }. Notice that in any case, neg(vg) = k — 1, by definition.
Hence, d(vg) = opt(vg) after k rounds, by the induction assumption. For
illustration, see Figure 1.

Consider the (k+1)th round of BFD. At first, we prove for the case, when
all non-negative edges of P have a positive cost. Let us prove by induction
that the vertices v; € V enter S with d(v;) = opt(v;) in the increasing order
of i. As the basis, we prove that vy, with d(vg) = opt(vg), is scanned first
in V. If k = 0, then vy = s, while s is always scanned first in the first
Dijkstra_scan, by initializing.

Assume now k > 1. Then, by the definition of P and the case assumption,
all edges in P, except maybe the last one, have a positive cost. Since any
prefix of P is an optimal path to its end-vertex, function opt strictly grows
along P on V. Therefore, by Fact 2.1(1), for any v;, v, @ < j, always holds
opt(v;) < opt(vj) < d(v;). In particular, during the (k + 1)th round, d(vy) =
opt(vg) always is the unique minimal value of d on V. Hence by the Dijkstra
rule, vy enters S first among the vertices in V. This is the end of the induction
basis.

At the induction step, we assume that v;, i < ¢, entered S with d(v;) =
opt(v;) before v;;1, and prove that v;,; enters S next in V with d(viy1) =
opt(viy1). When v; enters S, it is immediately scanned; during its scan,
d(viy1) gets its final value opt(v;1;1) via the relaxation on edge (vj,v;t1), if
d(vi11) was not equal it before that. After that at the (k + 1)th round,
d(viy1) is always minimal among the values of d on {vi1,...,v,}, by the
reasons similar to those in the basis proof for k£ > 1. Therefore, v;,; enters
S first among the vertices in {v;4y,...,v,}. This is the end of the inner
induction proof.

Observe that while scanning v, at the (k + 1)th round of BEFD, also d(v)
gets its final value opt(v) via the relaxation on edge (vq, v), as required in the
step of the outer induction. This is the end of the outer induction proof.

Now, let edge costs on P be general. This case differs in that there may
be sub-paths of P consisting of edges of zero cost only, so that opt is a
constant at each of them, and those constants strictly grow along P. The
only difference from the analysis of the previous case is that the vertices
v;, © > 1, of such a sub-path may enter S in any order, provided d(v;) =
opt(v;) at the moment of entering S. Indeed, suppose that vertex v; enters
S, while the first vertex on P not in S is Vit1, t +1 < j, and v; is in S with
d(v;) = opt(v;). By the analysis as above, we have d(v; 1) = opt(v;y1) at
that moment. By the Dijkstra rule, d(v;) < d(viy1) = opt(vit1), and thus
d(vj) < opt(viy1) < opt(v;) = d(v;) = opt(vit1) = opt(v;). This closes the
gap between the restricted and the general cases.

For BFD-p, the difference is that there is no guarantee that all vertices
are scanned at each round. The corresponding change in the proof that d(v)
converges to opt(v) is as follows: Let us consider the first round, &', where
some vertex v,, on P acquires d(vy,) = opt(vn,). By the reasons as above,
holds k' < k. The inner induction in the proof is then applied to round &'+ 1
instead of round k + 1, and its base is v,, instead of vy. At the induction
step, we show, in a similar way, that vertices v;, m+ 1 < i < ¢, subsequently
acquire values opt(v;). By the choice of v,,, this means that their d values
really decrease. Therefore, they should be scanned at the same round, as
required. O

Theorem 2.3 If there is no negative cycle reachable from s in G, BFD
correctly computes opt(v) for allv € V' and the cheapest path tree, in at most

neg(G, s) + 2 rounds. Otherwise, it reports on the existence of such a cycle.
This holds for BFD-p as well.

Proof: By Proposition 2.2, if there is no negative cycle reachable from s,
after neg(G, s) + 1 BFD rounds, d values equal opt values at all vertices.
By Fact 2.1(2), at the round numbered at most (neg(G, s) + 2) there is no
change of d values, and BFD stops. Since neg(G,s) < |V| — 3, this should
happen not later than after round |V| — 1.

Since Dijkstra_scan executes Relaz on all edges reachable from s, it may
be considered a specific implementation of Plain_scan. Therefore, BFD may
be considered a specific implementation of the generic BF. Since BF is known
to produce the cheapest path tree from s, this holds for BFD as well.

If there exists a negative cycle reachable from s, then by Fact 2.1(3), even
at round |V| — 1 there would exist an edge (u,v) with d(u) + c(u,v) < d(v).
Since Dijkstra_scan executes Relar on all edges reachable from s, there
would be a change of d at round |V| — 1. BFD will then stop and report
accordingly.

The proof for BED-p is similar. a

2.3 Running Time

Clearly, the running time of BFD is defined by that of Dijkstra_scan. It
is easy to see that the implementations of Dijkstra supported by a priority
queue are robust to negative edge costs. Therefore, the implementation based
on Fibonacci heap provides the following bound:

Theorem 2.4 There exists an implementation of BFD running in time
O(neg(G, s)-(|E|+|V]log|V|)) for graphs G = (V, E) with no negative cycle
reachable from s.

For a graph G with negative cycles reachable from s, the round number
bound of BFD is about |V, the same as that of BF.? Let us try to reduce
this bound, for specific cases. The following statement is straightforward.

Observation 2.5 For any known bound B for neg(G, s), the stopping con-
dition (i = |V| — 1) of BFD may be replaced by (i = B + 2), thus bounding
the number of BFD rounds by B + 2.

3A wide analysis of practical negative cycle detection may be found in [2].

Let #neg(G) denote the minimum of the number of vertices with outgo-
ing negative edges (excluding s) and the number of vertices with incoming
negative edges, in G. Clearly, #neg(G) cannot exceed the total number of
negative edges in G. By definition, we have neg(G, s) < #neg(G).

Corollary 2.6 The stopping condition (i = |V| — 1) of BFD may be re-
placed by (i = #neg(G) + 2), thus bounding the number of BFD rounds by
#neg(G) + 2.

Remark: The arc-fixing algorithm suggested in [2, Section 5.5] iterates
Dijkstra executions on modified versions of G. It is stated there (with no
proof) that it solves the problem in at most #neg(G) Dijkstra runs.

Let us describe, for a not strongly connected graph G, the following bound
B5°C(@Q) for neg(G, s), which can be computed by a linear time preprocess-
ing. We begin with computing DAG G®¢C of strongly connected compo-
nents (SCCs) of G (e.g., by Kosaraju-Sharir algorithm); the edge between
two SCCs is called negative if there exists a negative edge between their ver-
tices in G. We give to each SCC C weight #neg(G(C)), where G(C) is the
sub-graph induced by C. We define the weight of a path in G°““ be the
sum of the weights of its vertices plus the number of negative edges in it. We
compute the maximal weight of a path from the SCC of s in G5 (it is well
known how to do this using a topological sort). We denote that weight by
B3CC(G, s). Tt is easy to see that neg(G, s) < BYY(G, s), thus implying:

Corollary 2.7 For any graph G, the value of B5““(G, s) can be computed
in a linear time. Then, the stopping condition (i = |V| — 1) of BFD may be
replaced by (i = B3YC(G, s) + 2), thus bounding the number of BFD rounds
by B5CC(G, s) + 2.

Let us return to the running time of a BFD round. Observe that many
implementations of Dijkstra are known. They provide either better worst
case bounds for particular graph classes, or better constant factors in running
time bounds for the general case. An implementation with a lower constant
factor may be preferred, in practice, to those with a better O(-) bound.

Note that some implementations of Dijkstra might rely on non-negativity
of edge costs, either explicitly or implicitly, and hence might work improperly
if there are negative edges in GG. For example, the implementation of Wagner
[14] assumes edge costs to be not so large non-negative integers, and uses an

10

integer priority queue. It runs in time O(|E| + 0ptnaz), with a low constant
factor, where opt,,.. denotes the maximal value of a cheapest path from s.
Hence, it may be preferred when opt, ... = O(|E]).

Observe that when Dijkstra scans u, if c¢(u,v) < 0 and v € V \ S,
Relax(u,v) decreases d(v) below d(u). Since Wagner’s implementation relies
on the known property of Dijkstra to insert vertices to .S in a non-decreasing
order of their d values, it will simply skip scanning vertices v as above, thus
implementing Dijkstra improperly.

Let us describe a robust version BFD-r of BFD, which runs Dijkstra_scan
on a graph with non-negative edges only. The changes in BFD-r w.r.t. BFD
as above are as follows. Denote the set of negative edges in G by E~.

e Routines Dijkstra_scan and Plain_scan acquire an additional param-
eter F/, thus getting the edge set to scan via this parameter, instead of
using the globally defined set E.

e The call to Dijkstra_scan in the do < ... > until loop is replaced by
two consequent calls: Dijkstra_scan(E \ E~) and Plain_scan(E™).

Theorem 2.8 The BFD-r version of BFD is correct, keeping the round
number bounds, whichever implementation of Digkstra on a graph with non-
negative edge costs is used in Dijkstra_scan.

Proof: Let us show that the proof of Proposition 2.2 (and thus of Theo-
rem 2.3) remains valid for BFD-r. It is easy to check that the proof part
analyzing the insertion of vertices in V into S remains fully valid, being
now related to the execution of Dijkstra_scan(E \ E~). Consider now the
concluding remark on ensuring the equality d(v) = opt(v) via executing
Relax(v,,v) after inserting v, into S. It remains valid either by executing
it in Dijkstra_scan, if c¢(vg,v) > 0, or by executing it in Plain_scan(E~),
otherwise. O

In addition, there exist implementations of Dijkstra-like algorithms, work-
ing with special time bounds for specific graph classes. For example, algo-
rithm [5] works when edge costs are positive real numbers. It generalizes
Dijkstra by relaxing the choice condition of the next vertex to scan: from
d(v) being minimal in V' \ S to |d(v)/¢min| being minimal in V' \ S, where
Cmin 18 the minimal edge cost. In accordance, it uses the integer priority

11

queue with key |d(v)/cmin]. Its running time bound is scalable w.r.t. edge
costs: O(|E| + hmaz),

Let us describe yet another version BED-r*. Let E+ be the set of edges
with positive costs in G, and ¢, be the minimal positive edge cost (that is,

it i ¢pmin of graph (V, ET)). BED-r* differs from BFD-r in that the two calls
replacing Dijkstra_scan are: Dijkstra_scan(E™1) and Plain_scan(E \ ET).

Accordingly, we change the measure of the BFD complexity: Let non_pos(G, s)
be defined similarly to neg(G, s), but with respect to edges with non-positive
costs.

Proposition 2.9 If there exists a cheapest path from s to v, after non_pos(v)+
1 rounds of BFD-r" holds d(v) = opt(v).

Proof: Let us show that the proof of Proposition 2.2 remains valid, with
minor changes, while notion neg(G,s) changes to non_pos(G,s) and each
reference to a negative edge changes to that to a non-positive edge. Note that
only the restricted case is needed in the analysis. Since now c(v;, viy1) > ¢,

1 <i < q—1, the values of |opt(v;)/c}y,] strictly grow along P. Using this

change, the property of vertices in V' being scanned in their order on P, with
d(v;) = opt(v;), is proved in the same way. 0

The proof of Theorem 2.3 remains valid for the following theorem, now
based on Proposition 2.9 instead of Proposition 2.2.

Theorem 2.10 The BFD-r" version of BFD is correct when the Dijkstra-
like algorithm and its implementation of [5] are used in Dijkstra_scan, while
the round number bound changes to non_pos(G, s) + 2.

Also the analogs of Corollaries 2.6 and 2.7 and their proofs remain correct,
with the notation change as above.

It is easy to check that all results of this section hold for BFD-p and its
respective versions — BFD-pr and BFD-pr+-.

Open question: The Dijkstra choice rule relaxation of [5] was substantially
extended for undirected graphs in Dijkstra-like algorithms [13] and [11]. It
would be interesting to check whether these algorithms could be used in some
version of BFD.

12

Figure 2: Tightness example.

2.4 Tightness of Bounds and a Speeding Up Idea

Consider the graph G presented in Figure 2. The cheapest path from s to v
is P = (s,v0,v1,...,Uv), and its cost is 1. It contains all k negative edges
in G as its inner edges. Hence, neg(G,s) =k = |V| — 3.

Let us run BFD from s. Consider the first Dijkstra_scan. After scanning
s, the values of d get: d(v;) « 2k—1i,7=0,1,...,k. Then, the vertices v; are
scanned in the order of d, that is in the inverse order of indices (from here on,
scans of s and v are not mentioned, since they change no value of d). While
scanning vg, the value of d(v) becomes k + 1, and all d(v;) decrease by 1,
1=1,..., k. At the second Dijstra_scan, the order of scanning is the same,
so that d(v) and d(v;), ¢ = 2,...,k, decrease by 1. The jth Dijstra_scan,
7 =23,..., k41, is similar, reducing the d values by 1 for the k + 2 — j last
vertices of P. As a result, all d values become equal to the opt values. At
the round k + 2, there is no change of d, and hence BFD finishes.

The total number of rounds is k + 2 = neg(G,s) + 2 = |V| — 1. This
proves the tightness of the Theorem 2.3 bound. Note that also the average
number of updates of d per edge is high in this example: about %\V\

It is interesting that there may be a way to solve such a hard example by
BFD with a small number of Dijkstra_scan executions, using the reweighting
technique as in the Johnson algorithm (see, e.g., [3, Chapter 26.3]; also the
entire approach of [2] is based on a similar potential technique).

Here is an example (for illustration see Figure 3). Let us add to the above
graph G a”copy” ¢ of s, with edge (¢, s), ¢(s', s) = 0, and edges to all v; with
costs as denoted in the figure. Notice that neg(G, s) remains equal to k, and
BFD running from s works exactly as above, so this example is as hard as the

13

Figure 3: Example of the power of Johnson reweighting for BFD.

one above. Let us now run BFD from s'. Pay attention that each edge (¢, v;)
is an optimal path from s to v;. Hence neg(G, s’) = 0, and thus running BFD
from s’ would require just two rounds. Note that all vertices reachable from
s are reachable from s’ in the new graph. Using Johnson’s reweighting, we
arrive at a graph with non-negative costs of all edges reachable from s. Hence,
an execution of Dijkstra from s on that graph will provide a solution for the
original graph. Summarizing, only three Dijkstra/Dijkstra_scan executions
would suffice in total, instead of £+ 2 executions. This shows how much help
can be obtained by choosing an appropriate source for an auxiliary BFD run,
with subsequent reweighting.

A motivation for existence of such problem instances may continue that
mentioned in Section 1. Naturally, all negative edges created by the driver
would go in the direction of his motion. In such a case, probably, there would
be no optimal path from the driver’s target or from some far away vertex
approximately equidistant from the source and the target, containing many
negative edges. Then, such a choice of an auxiliary source as above will help.

Note that in general, finding such a useful auxiliary source, if exists, might
be hard.

3 Shortest path tree proof for Bellman-Ford
Let us prove the following simple property:

Lemma 3.1 Consider any (properly initialized) Relax-based algorithm. If a
relazation on edge (u,v) decreases d(v) to d(u) + c(u,v) = opt(v), at that

moment d(u) already equals opt(u).

14

Proof: Indeed, assume to the contrary that the optimal path P from s to
w is cheaper than d(u) at that moment. Then, the path P||(u,v) is cheaper
than d(u) + c(u,v) = opt(v), a contradiction. 0

At any moment of BF, denote by V the (dynamic) vertex set {v € V :
d(v) = opt(v) < oo}.

Proposition 3.2 A¢ any moment of Bellman-Ford, the graph T' formed by
the vertices in V- and the back-pointers from them is a cheapest path tree from
s to the vertices in V.

Proof: We prove by induction on the size of V. The basis case V = {s} is
trivial.

Assume T is a cheapest path tree to V, when the relaxation on edge (u, v)
decreases d(v) to d(u) + c¢(u,v) = opt(v). By Lemma 3.1, u is in T". By the
induction assumption, the path from s to win 7', P,, costs opt(u). As a result
of the relaxation, the new vertex v and the leaf edge from u to v are added
to T, keeping it be a tree rooted at s. The path P,||(u,v) to v in T costs
opt(u) + c(u,v) = d(u) + c(u,v) = opt(v). Hence, the new T is a cheapest
path tree from s to the new V. By Fact 2.1(2), back-pointers from vertices
currently in V will never change after that. This is the end of the induction
step. O

Clearly, this Proposition implies straightforwardly that Bellman-Ford builds
the cheapest paths tree, when exists.

Acknowledgment
The authors thank Boris Cherkassky and Andrew Goldberg for their help
with relating the paper to contemporary practical methods and more.
References

[1] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wag-

ner. Combining Hierarchical and Goal-Directed Speed-Up Techniques for Di-
jkstra’s Algorithm. ACM Journal of Experimental Algorithmics 15 (2010).

15

2]

B.V. Cherkassky, L. Georgiadis, A.V. Goldberg, R.E. Tarjan, and Renato
F. Werneck. Shortest Path Feasibility Algorithms: an Experimental Evalua-
tion. In Proc. of 6th International Workshop on Algorithm Engineering and
Ezperiments, STAM, 2008.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms,
McGraw-Hill, 2001.

E.A. Dinic. An algorithm for the solution of the max-flow problem with the
polynomial estimation. Doklady Akademii Nauk SSSR 194 (1970), no. 4 (in
Russian; English transl.: Soviet Mathematics Doklady 11 (1970), 1277-1280).

E.A. Dinic. Economical algorithms for finding shortest paths in a network,
in: Transportation Systems. Models, Algorithms, Software, Analysis, Yu.S.
Popkov and B.L. Shmulyian eds., Moscow, 1978, 36-44 (in Russian).

E.A. Dinic. The fastest algorithm for the PERT problem with AND- and
OR-vertices (the new-product-new technology problem). In Proc. of the Math.
Progr. Soc. Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO’90), Waterloo, Canada, R. Kannan and W. R. Pulleyblank eds.,
Univ. of Waterloo Press, 1990, pp. 185-187.

E.A. Dinic, A.B. Merkov, and I.A. Tejman. Coordination analysis and com-
puting of early periods of launching for a set of new technologies, in: Models
and Methods for Forecast of the Science-Technology Progress, V. V. Tokarev
ed., Moscow, 1984, 125-131 (in Russian).

A.V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J.
Comput. 24, 1995, 494-504.

J. Kleinberg and E. Tardés. Algorithm Design. Pearson, Addison Wesley,
2006.

D. E. Knuth. A generalization of Dijkstra’s algorithm. Information Processing
Letters 6 (1977), no.1, pp.1-5.

S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comp. 34 (2005), 1398-1431.

R.E. Tarjan, Data Structures and Network Algorithms. SIAM, Philadelphia,
PA, 1983.

M. Thorup. Undirected single-source shortest paths with positive integer
weights in linear time. J. ACM 46 (1999), 362-394.

16

[14] R.A. Wagner. A shortest path algorithm for edge-sparce graphs. J. ACM 23
(1976), 50-57.

17

